地学前缘 ›› 2021, Vol. 28 ›› Issue (3): 139-155.DOI: 10.13745/j.esf.sf.2021.1.1
王功文1(), 张寿庭1, 燕长海2, 庞振山3, 王宏伟4, 冯占奎5, 董宏6, 程红涛7, 何亚清8, 李瑞喜1, 张智强1, 黄蕾蕾1, 郭娜娜4
收稿日期:
2021-01-02
修回日期:
2021-01-12
出版日期:
2021-05-20
发布日期:
2021-05-23
作者简介:
王功文(1972—),男,教授,博士生导师,从事三维地质建模与地学信息集成的资源定量预测评价科研工作。E-mail: gwwang@cugb.edu.cn
基金资助:
WANG Gongwen1(), ZHANG Shouting1, YAN Changhai2, PANG Zhenshan3, WANG Hongwei4, FENG Zhankui5, DONG Hong6, CHENG Hongtao7, HE Yaqing8, LI Ruixi1, ZHANG Zhiqiang1, HUANG Leilei1, GUO Nana4
Received:
2021-01-02
Revised:
2021-01-12
Online:
2021-05-20
Published:
2021-05-23
摘要:
21世纪地球科学的“第四范式”与第四工业时代以及5G+智能通信为矿业开发与环境防护的关联研究提供了新契机。以地球动力学背景、成矿过程、定量评价“三位一体”的地学理论为基础,以栾川矿集区为例,运用地学大数据(多维多尺度的地质、地球物理、地球化学、高光谱与高分辨率遥感(多时相)以及实时矿业等数据)的深层次人工智能挖掘和三维/四维多学科多参数多尺度建模技术平台,开展矿集区至矿床多尺度的三维地质模型、成矿过程模型和定量勘查模型构建及其资源的定量预测评价,旨在实现数字矿山的高精度三维地质(岩石、构造、水文、土壤等)环境保护和资源综合开发利用的动态评价,为研究区矿产资源与矿山环境可持续发展提供科学依据。研究结果概述如下:(1)地球科学大数据关联矿集区资源预测评价。利用三维地质建模、地质-地球物理正反演解译、地球化学与遥感等地学数据深层次挖掘,结合自主研发GeoCube2.0集成软件,实现了栾川矿集区(500 km2,深部2.5 km)的深部靶区优选和矿产资源综合评价,Mo资源量650万t,W资源量150万t, Pb-Zn-Ag累计具有500万t资源量。(2)地质、矿床与勘探的三维地学建模关联矿山环境。南泥湖—三道庄—上房矿山露采场与骆驼山深部巷道勘探与采矿的资料表明,区域NW向的斑岩夕卡岩型矿床与矿体与地下水空间关联度不高,而成矿期后通常具有张性或张扭性特征的NE向断裂是地下水运移的通道;在NW向Pb-Zn矿床地段具有显著淋滤特征的次生金属矿产出,浅表的氧化铅锌矿与锰铁矿伴生孔雀石化、铅华等水蚀作用;高海拔Pb-Zn矿区且NE向断裂构造发育的冷水、百炉沟地段存在地下水污染风险。(3)智慧矿山构建关联资源环境评价与决策。在大型矿山建立三维地质模型并关联矿区古采洞、露采场与深部巷道工程,实现矿业合理定位和可持续发展;利用高光谱数据库构建三维有用、有害元素模型实现勘探、采矿与选矿矿物学关联以便于有害元素(As、Sb、Hg等)的回收或尾矿处理;利用高分辨率Worldview2影像判别重要尾矿库的废水、矿渣泥浆含铁染分布,以便于防护地表径流水、土壤污染等。
中图分类号:
王功文, 张寿庭, 燕长海, 庞振山, 王宏伟, 冯占奎, 董宏, 程红涛, 何亚清, 李瑞喜, 张智强, 黄蕾蕾, 郭娜娜. 栾川矿集区地学大数据挖掘和三维/四维建模的资源-环境联合预测与定量评价[J]. 地学前缘, 2021, 28(3): 139-155.
WANG Gongwen, ZHANG Shouting, YAN Changhai, PANG Zhenshan, WANG Hongwei, FENG Zhankui, DONG Hong, CHENG Hongtao, HE Yaqing, LI Ruixi, ZHANG Zhiqiang, HUANG Leilei, GUO Nana. Resource-environmental joint forecasting in the Luanchuan mining district, China through big data mining and 3D/4D modeling[J]. Earth Science Frontiers, 2021, 28(3): 139-155.
图1 地区地质简图、栾川矿集区大地构造位置与三维地质模型(500 km2,垂向2.5 km)
Fig.1 Simplified geological map (a), tectonic sketch map (b), and three dimensional geological model (c) of the Luanchuan mining district (500 km2 in area, 2.5 km in vertical depth)
图2 栾川矿集区遥感影像(ETM+342)与NW向构造模型(垂向2.5 km)
Fig.2 Remote sensing image (ETM+342) and NW-trending structural model (2.5 km in vertical depth) of the Luanchuan mining district
图3 栾川矿集区大数据挖掘与三维建模的资源预测评价流程图
Fig.3 Flowchart of resources prediction and evaluation based on big data mining and 3D modeling for the Luanchuan mining district
图4 栾川1:25 000重磁综合解译燕山期岩体与CSAMT剖面交互验证
Fig.4 Cross-validation of 1:25000 gravity and magnetic interpretation of intrusive bodies from the Yanshan period as compared to CSAMT image for the Luanchuan area
图5 栾川1:25 000重磁综合解译燕山期岩体与三维NW、NE向断裂构造
Fig.5 1:25000 gravity and magnetic interpretation of intrusive bodies from the Yanshan period and 3D structural models of the NW and NE-trending faults for the Luanchuan district
图6 栾川三维地质模型(部分)与MT剖面关联解译
Fig.6 Interpretation of the correlation between the 3D geological model (a portion is shown) of the Luanchuan area and the MT section
图7 栾川矿集区地质(实测)-浅源地震-CSAMT-重磁反演-构造裂隙化探综合找矿模型(据文献[25]修改)
Fig.7 Composite diagram showing the integrated prospecting model involving in situ geology, shallow source seismology, CSAMT, gravity-magnetic inversion, and tectono-geochemical exploration for the Luanchuan mining district. Modified after [25].
图8 基于Flac3D的栾川石宝沟矿区的三维侵入岩体动态模拟结果(引自文献[7])
Fig.8 Dynamic simulation results of 3D intrusive rock mass in the Shibaogou mining field, Luanchuan area by Flac 3D. Adapted from [7].
图9 基于成矿动力学实验分析的栾川矿集区推覆构造几何模型(引自文献[7])
Fig.9 Geometric modeling of the nappe structure of the Luanchuan mining district by experimental metallogenic dynamics analysis. Adapted from [7].
图10 基于Worldview-2 高分辨率遥感影像(0.5 m)栾川南泥湖Mo矿田特征
Fig.10 Worldview-2 high resolution (0.5 m) remote sensing image showing the main features of the Nannihu Mo orefield, Luanchuan area
图11 栾川南泥湖Mo矿田三维地质、矿床、构造与岩体模型
Fig.11 Results of 3D geological, depositional and fault/intrusive body modeling of the Nannihu Mo orefield, Luanchuan area
图12 基于GeoCube2.0软件集成的栾川Mo与Pb-Zn靶区优选模型
Fig.12 Results of priority targeting of Mo and Pb-Zn mining zones of the Luanchuan area using GeoCube2.0 software
级别 | 地段-编号 | 靶区 | 坐标中心位置 (X,Y,Z) | 靶区概述 | 矿种 | 估算资源量(含储量) /万t |
---|---|---|---|---|---|---|
A | A1 | 大坪 | 553 400,3 748 700,1 040 | 大坪岩体周边为浅隐伏地段,预测地表以下100 m见矿。地表出露岩体、Mo多金属矿脉,蚀变强,断裂构造与褶皱发育,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn 120 |
A2 | 碾道沟 | 549 100,3 751 300,920 | 石宝沟岩体东北部为浅隐伏地段,预测地表以下200 m见矿,有隐伏岩体(石宝沟岩体北部侧伏),NE向构造控矿显著,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn110 | |
A3 | 扎子沟 | 547 500,3 750 400,1 100 | 石宝沟岩体西北部为浅隐伏地段,预测地表以下200 m见矿,有隐伏岩体(石宝沟岩体NE向侧伏),NE向构造控矿显著,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 120 | |
A4 | 大南沟 | 542 200,3 753 000,1 340 | 上房西南为隐伏矿段,预测靶区深达海拔500 m标高,有隐伏岩体,NE向构造控矿显著,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 10 Pb-Zn 100 | |
A5 | 冷水西 | 541 300,3 758 300,920 | 冷水西部为隐伏矿段,预测靶区深达海拔600 m标高,有隐伏岩体,NE向构造控矿显著,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 10 Pb-Zn 100 | |
A6 | 火神庙东 | 532 400,3 757 500,560 | 火神庙东为隐伏矿段,预测靶区深达海拔300 m标高以下,分布有隐伏中酸性岩体和基性岩体,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn 110 | |
A7 | 鱼库北 | 544 900,3 749 400,860 | 东鱼库北部为浅隐伏地段,预测靶区地表以下200 m见矿,分布有隐伏中酸性岩体和基性岩体,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 100 | |
B | B1 | 黄背岭西、西北 | 540 990,3 750 800,1 250 | 黄背岭西、西北部为Pb-Zn预测找矿靶区,西北部有Mo远景区。分布有隐伏岩体,物探异常明显 估算域:斑岩型-夕卡岩型Mo矿、热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 80 |
B2 | 红洞沟东南部 | 539 800,3 747 400,1 100 | 红洞沟东南为Pb-Zn预测找矿靶区。构造控矿特征显著;陶湾群地层内分布有酸性小岩体,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn | Pb-Zn 70 | |
B3 | 白沙洞东南 | 554 500,3 755 300,980 | 白沙洞东南为Pb-Zn预测找矿靶区。NW、NE向构造控矿特征显著;出露官道口群地层,深部可能有燕山期岩体或岩脉,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn | Pb-Zn 60 |
表1 基于GeoCube2.0软件集成的栾川Mo与Pb-Zn矿区外围主要靶区优选
Table 1 Evaluation summary of main targeting areas surrounding the Mo and Pb-Zn mining zones of the Luanchuan area using GeoCube2.0 software
级别 | 地段-编号 | 靶区 | 坐标中心位置 (X,Y,Z) | 靶区概述 | 矿种 | 估算资源量(含储量) /万t |
---|---|---|---|---|---|---|
A | A1 | 大坪 | 553 400,3 748 700,1 040 | 大坪岩体周边为浅隐伏地段,预测地表以下100 m见矿。地表出露岩体、Mo多金属矿脉,蚀变强,断裂构造与褶皱发育,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn 120 |
A2 | 碾道沟 | 549 100,3 751 300,920 | 石宝沟岩体东北部为浅隐伏地段,预测地表以下200 m见矿,有隐伏岩体(石宝沟岩体北部侧伏),NE向构造控矿显著,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn110 | |
A3 | 扎子沟 | 547 500,3 750 400,1 100 | 石宝沟岩体西北部为浅隐伏地段,预测地表以下200 m见矿,有隐伏岩体(石宝沟岩体NE向侧伏),NE向构造控矿显著,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 120 | |
A4 | 大南沟 | 542 200,3 753 000,1 340 | 上房西南为隐伏矿段,预测靶区深达海拔500 m标高,有隐伏岩体,NE向构造控矿显著,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 10 Pb-Zn 100 | |
A5 | 冷水西 | 541 300,3 758 300,920 | 冷水西部为隐伏矿段,预测靶区深达海拔600 m标高,有隐伏岩体,NE向构造控矿显著,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 10 Pb-Zn 100 | |
A6 | 火神庙东 | 532 400,3 757 500,560 | 火神庙东为隐伏矿段,预测靶区深达海拔300 m标高以下,分布有隐伏中酸性岩体和基性岩体,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 30 Pb-Zn 110 | |
A7 | 鱼库北 | 544 900,3 749 400,860 | 东鱼库北部为浅隐伏地段,预测靶区地表以下200 m见矿,分布有隐伏中酸性岩体和基性岩体,物探异常明显 估算域:斑岩-夕卡岩型Mo与热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 100 | |
B | B1 | 黄背岭西、西北 | 540 990,3 750 800,1 250 | 黄背岭西、西北部为Pb-Zn预测找矿靶区,西北部有Mo远景区。分布有隐伏岩体,物探异常明显 估算域:斑岩型-夕卡岩型Mo矿、热液脉型Pb-Zn矿 | Pb-Zn、Mo | Mo 40 Pb-Zn 80 |
B2 | 红洞沟东南部 | 539 800,3 747 400,1 100 | 红洞沟东南为Pb-Zn预测找矿靶区。构造控矿特征显著;陶湾群地层内分布有酸性小岩体,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn | Pb-Zn 70 | |
B3 | 白沙洞东南 | 554 500,3 755 300,980 | 白沙洞东南为Pb-Zn预测找矿靶区。NW、NE向构造控矿特征显著;出露官道口群地层,深部可能有燕山期岩体或岩脉,物探异常明显 估算域:热液脉型Pb-Zn矿 | Pb-Zn | Pb-Zn 60 |
图13 栾川赤土店高分辨率遥感与巷道工程关联的数字化矿山三维管控平台
Fig.13 Digital mine 3D platform based on high resolution remote sensing and channel engineering in the Chitudian deposit in the Luanchuan district
图14 赤土店三维西沟铅锌矿高精度勘探钻孔、矿体、采矿工程模型(位置见图10)
Fig.14 Three-dimensional model of high-precision exploration drilling, orebody and channel mining engineering for the Chitudian Xigou Pb-Zn mine (location see Fig.10)
[1] | 赵鹏大. 定量地学方法及应用[M]. 北京: 高等教育出版社, 2004. |
[2] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法[M]. 北京: 地质出版社, 2014. |
[3] | 薛建玲, 陈辉, 姚磊, 等. 勘查区找矿预测方法指南[M]. 北京: 地质出版社, 2018. |
[4] | 莫宣学, 董国臣, 邓晋福, 等. 大型-超大型矿床的成矿动力学背景[M]. 北京: 地质出版社, 2020. |
[5] | 翟裕生, 刘家军, 薛春纪, 等. 大型-超大型矿床成矿过程与机理[M]. 北京: 地质出版社, 2020. |
[6] | 赵鹏大, 陈永清, 张寿庭, 等. 大型-超大型矿床定量评价[M]. 北京: 地质出版社, 2020. |
[7] | 王功文, 张寿庭, 陈建平, 等. 大型-超大型矿床定量评价技术手册[M]. 北京: 地质出版社, 2019. |
[8] | 赵鹏大. 大数据时代数字找矿与定量评价[J]. 地质通报, 2015, 34(7):1255-1259. |
[9] | 肖克炎, 孙莉, 李楠, 等. 大数据思维下的矿产资源评价[J]. 地质通报, 2015, 34(7):1266-1272. |
[10] | 郭华东. 地球大数据科学工程[J]. 中国科学院院刊, 2018, 33(8):818:824. |
[11] | 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展[J]. 岩石学报, 2018, 34(2):255-263. |
[12] | 吴冲龙, 刘刚. 大数据与地质学的未来发展[J]. 地质通报, 2019, 38(7):1081-1088. |
[13] | 赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4):1-5. |
[14] | 甘甫平, 董新丰, 闫柏琨, 等. 光谱地质遥感研究进展[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1):44-62. |
[15] | 袁峰, 张明明, 李晓晖, 等. 成矿预测:从二维到三维[J]. 岩石学报, 2019, 35(12):3863-3874. |
[16] | BRISTOL R S, EULISS N H, BOOTH N L, et al. Science Strategy for core science systems in the U. S. Geological Survey, 2013-2023[S]. Reston, Virginia: U. S. Geological Survey, 2012. |
[17] | BENNDORF J, BUXTON M W N, NIENHAUS K, et al. Real-time mining: moving towards continuous process management in mineral resource extraction[C]// SEYDAM S. Proceedings of the 3rd international future mining conference. Sydney. Melbourne, Victoria: The Australian Institute of Mining and Metallurgy, 2015. |
[18] | BENNDORF J. Real-time mining: grade monitoring and control cockpit[C]// AKIDA 2016. Aachen: Institut für Maschinentechnik der Rohstoffindustrie, 2016. |
[19] |
WAMBEKE T, BENNDORF J. A Simulation-based geostatistical approach to real-time reconciliation of the grade control model[J]. Mathematical Geosciences, 2017, 49(1):1-37.
DOI URL |
[20] | AILLERES L, GROSE L, LAURENT G, et al. LOOP: a new open source platform for 3D geo-structural simulations[C]// BERG R C, MACCORMACK K, RUSSELL H A J, et al. Three-dimensional geological mapping: workshop extended abstracts. Illinois: Champaign, Illinois State Geological Survey, Open File Series, 2009. |
[21] |
KREUZER O P, YOUSEFI M, NYKNEN V. Introduction to the special issue on spatial modelling and analysis of ore-forming processes in mineral exploration targeting[J]. Ore Geology Reviews, 2020, 119:103391.
DOI URL |
[22] |
PáR W. 3D, 4D and predictive modelling of major mineral belts in Europe[M]. Berlin: Springer-Verlag, 2015: 10.1007/978-3-319-17428-0.
DOI |
[23] | 王功文, 张寿庭, 燕长海, 等. 基于地质与重磁数据集成的栾川钼多金属矿区三维地质建模[J]. 地球科学: 中国地质大学学报, 2011, 36(2):360-366. |
[24] | 马振波, 燕长海, 宋要武, 等. CSAMT与SIP物探组合法在河南省栾川山区隐伏金属矿勘查中的应用[J]. 地质与勘探, 2011, 47(4):654-662. |
[25] |
WANG G W, LI R X, CARRANZA E J M, et al. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China[J]. Ore Geology Reviews, 2015, 71:592-610.
DOI URL |
[26] |
WANG G W, PANG Z S, BOISVERT J B, et al. Quantitative assessment of mineral resources by combining geostatistics and fractal methods in the Tongshan porphyry Cu deposit (China)[J]. Journal of Geochemical Exploration, 2013, 134:85-98.
DOI URL |
[27] |
WANG G W, ZHANG S T, YAN C H, et al. Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region, China[J]. Computers & Geosciences, 2011, 37(12):1976-1988.
DOI URL |
[28] |
WANG G W, ZHANG S T, YAN C H, et al. Application of the multifractal singular value decomposition for delineating geophysical anomalies associated with molybdenum occurrences in the Luanchuan ore field (China)[J]. Journal of Applied Geophysics, 2012, 86:109-119.
DOI URL |
[29] |
ZHANG Z Q, WANG G W, MA Z B, et al. Batholith-stock scale exploration targeting based on multi-source geological and geophysical datasets in the Luanchuan Mo polymetallic district, China[J]. Ore Geology Reviews, 2019, 118:103225.
DOI URL |
[30] |
ZHANG Z Q, WANG G W, MA Z B, et al. Interactive 3D modeling by integration of geoscience datasets for exploration targeting in Luanchuan Mo polymetallic district, China[J]. Natural Resources Research, 2017, 27(3):315-346.
DOI URL |
[31] |
ZHANG Z Q, ZHANG J J, WANG G W, et al. From 2D to 3D modeling of mineral prospectivity using multi-source geoscience datasets, Wulong gold district, China[J]. Natural Resources Research, 2020, 29(1):345-364.
DOI URL |
[32] |
LI R X, WANG G W, CARRANZA E J M. GeoCube: a 3D mineral resources quantitative prediction and assessment system[J]. Computers and Geosciences, 2016, 89:161-173.
DOI URL |
[33] | AGTERBERG F P, BONHAM-CARTER G F, CHENG Q M, et al. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[C]// Computers in geology: 25 years of progress. New York: Oxford University Press, 1993, 25:13-32. |
[34] |
CHENG Q M, AGTERBERG F P, BALLANTYNE S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2):109-130.
DOI URL |
[35] | TURCOTTE D L. Fractals and chaos in geology and geophysics[M]. England: Cambridge University Press, 1997. |
[36] | PAN G, HARRIS D P. Information synthesis for mineral exploration (Vol.461)[M]. New York: Oxford University Press, 2000. |
[37] |
AFZAL P, ALGHALANDIS Y F, KHAKZAD A, et al. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling[J]. Journal of Geochemical Exploration, 2011, 108(3):220-232.
DOI URL |
[38] |
CARRANZA E J M. Geocomputation of mineral exploration targets[J]. Computers & Geosciences, 2011, 37(12):1907-1916.
DOI URL |
[39] |
CALCAGNO P, JEAN-PAUL CHILèS, COURRIOUX G, et al. Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules[J]. Physics of the Earth and Planetary Interiors, 2008, 171(1):147-157.
DOI URL |
[40] |
CAUMON G, COLLON-DROUAILLET P, DE-VESLUD C L C, et al. Surface-based 3D modeling of geological structures[J]. Mathematical Geosciences, 2009, 41(8):927-945.
DOI URL |
[41] | FALLARA F, LEGAULT M, RABEAU O. 3-D integrated geological modeling in the Abitibi Subprovince (Québec, Canada): techniques and applications[J]. Exploration & Mining Geology, 2006, 15(1/2):27-43. |
[42] |
GRAHAM G E, KOKALY R F, KELLEY K D, et al. Application of imaging spectroscopy for mineral exploration in Alaska: a study over porphyry Cu deposits in the eastern Alaska Range[J]. Economic Geology, 2018, 113(2):489-510.
DOI URL |
[43] | HOULDING S W. 3D geoscience modeling: computer techniques for geological characterization[M]. Berlin: Springer-Verlag, 1994. |
[44] |
MALLET J L. Discrete smooth interpolation in geometric modelling[J]. Computer-Aided Design, 1992, 24(4):178-191.
DOI URL |
[45] | MALLET J L. GOCAD: a computer aided design program for geological applications[M]. Berlin: Springer-Verlag, 1992. |
[46] |
MALLET J L. Discrete modeling for natural objects[J]. Mathematical Geology, 1997, 29(2):199-219.
DOI URL |
[47] | MALLET J L. Geomodeling. Applied geostatistics series[M]. New York: Oxford University Press, 2002. |
[48] |
JACKSON R G. Application of 3D geochemistry to mineral exploration[J]. Geochemistry Exploration Environment Analysis, 2010, 10(2):143-156.
DOI URL |
[49] | KAUFMANN O, MARTIN T. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines[J]. Computers & Geosciences, 2008(34):278-290. |
[50] |
LEITE E P, FILHO C. Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Caraja’s Mineral Province, Brazil[J]. Computers & Geosciences, 2009, 35:675-687.
DOI URL |
[51] | LINDSAY M D, AILLÉRES L, JESSESS M W, et al. Locating and quantifying geological uncertainty in three-dimensional models: analysis of the Gippsland Basin, southeastern Australia[J]. Tectonophysics, 2012: 10-27, 546-547. |
[52] |
POLLOCK D W, BARRON O V, DONN M J. 3D exploratory analysis of descriptive lithology records using regular expressions[J]. Computers & Geosciences, 2012, 39:111-119.
DOI URL |
[53] |
SPRAGUE K, KEMP E, WONG W, et al. Spatial targeting using queries in a 3-D GIS environment with application to mineral exploration[J]. Computers & Geosciences, 2006, 32(3):396-418.
DOI URL |
[54] |
ZANCHI A, FRANCESCAS S, STEFANO Z, et al. 3D reconstruction of complex geological bodies: examples from the Alps[J]. Computers & Geosciences, 2009, 35(1):49-69.
DOI URL |
[55] | 韩江伟, 云辉, 胡红雷, 等. 河南栾川矿集区深部钨钼矿体特征及资源预测[J]. 金属矿山, 2020, 533(11):141-151. |
[56] |
贾晗, 刘军省, 殷显阳, 等. 安徽铜陵硫铁矿集中开采区矿山地质环境评价研究[J/OL]. 地学前缘, 2021. DOI: 10.13745/j.esf.sf.2020.10.16.
DOI |
[57] | 何亚清, 杜红波, 彭府华. 三道庄矿露天和地下岩体工程灾害监测预警应用[J]. 有色地质, 2017, 69(4):81-85. |
[58] | 汪洁, 殷亚秋, 于航, 等. 基于RS和GIS 的浙江省矿山地质环境遥感监测[J]. 国土资源遥感, 2020, 32(1):232-236. |
[59] | 黄蕾蕾. 内蒙古乌努格吐山矿山高精度三维地质建模与评价[D]. 北京: 中国地质大学(北京), 2020. |
[1] | 王堃屹, 周永章. 粤西庞西垌地区非结构化地质信息机器可读表达与致矿异常区域智能预测[J]. 地学前缘, 2024, 31(4): 47-57. |
[2] | 周永章, 肖凡. 管窥人工智能与大数据地球科学研究新进展[J]. 地学前缘, 2024, 31(4): 1-6. |
[3] | 王堃屹,周永章,王俊,张奥多,余晓彤,焦守涛,刘心怡. 推荐系统算法在钦杭成矿带南段文地幅矿床预测中的应用[J]. 地学前缘, 2019, 26(4): 131-137. |
[4] | 刘心怡,周永章. 关联规则算法在粤西庞西垌地区元素异常组合研究中的应用 [J]. 地学前缘, 2019, 26(4): 125-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||