地学前缘 ›› 2020, Vol. 27 ›› Issue (3): 29-41.DOI: 10.13745/j.esf.sf.2020.4.10
• “非传统稳定同位素:分析方法、示踪机理和主要应用”主题专辑 • 上一篇 下一篇
收稿日期:
2019-07-01
修回日期:
2020-01-16
出版日期:
2020-05-20
发布日期:
2020-05-20
通信作者:
魏海珍
作者简介:
刘茜(1995—),女,博士研究生,矿物学、岩石学、矿床学专业。E-mail: liuxi12685@gmail.com
基金资助:
LIU Xi(), WANG Yijing, WEI Haizhen*(
)
Received:
2019-07-01
Revised:
2020-01-16
Online:
2020-05-20
Published:
2020-05-20
Contact:
WEI Haizhen
摘要:
地球卤素元素含量相对稀少,相对而言氯为最常见的卤素元素。氯是一种挥发性元素,具有强烈的亲水性。自然界氯两个稳定同位素35Cl和37Cl,其相对丰度分别为75.76%和24.24%。文章综述了氯在各个地质储库的特征、稳定氯同位素分馏的控制因素以及氯同位素的地质应用三大方面的研究进展。地球主要储库中蒸发岩、海水、岩浆岩、沉积物、变质岩、地幔的氯同位素组成分别为-0.5‰~+0.8‰、0.00±0.05‰、-1.12‰~+0.79‰、-3.0‰~+2.0‰、-3.6‰~0、-1.9‰~+7.2‰。地外(月球、火星及其他小行星4-Vesta)氯同位素组成变化范围分别为-4‰~+81.1‰、-5.6‰~+8.6‰、-3.8‰~+7.7‰。相对地球上氯同位素(δ37Cl)的变化范围(-14‰~+16‰),月球和火星δ37Cl的变化范围可达-5.6‰~+81‰,表明挥发分氯在地内和地外迁移循环过程中有显著不同同位素分馏主控机制。已经探明氯同位素分馏受控于物理过程(如扩散、离子过滤、沉淀溶解作用、火山作用)和化学作用(如水岩作用、变质作用,尤其是蛇纹石化作用)等。扩散作用、淋滤作用和火山作用富集重同位素,沉淀作用结晶盐δ37Cl先减小后上升,而蛇纹石化过程中多种因素共同影响。与其他指标结合,氯同位素地球化学可用于有效指示钾盐矿床远景区,评估示踪地下水的来源和演化路径、示踪污染物源区和量化生物修复、探究矿化流体来源、指示行星演化岩浆海洋脱气等过程。
中图分类号:
刘茜, 王奕菁, 魏海珍. 稳定氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 29-41.
LIU Xi, WANG Yijing, WEI Haizhen. Advances in stable chlorine isotope geochemistry[J]. Earth Science Frontiers, 2020, 27(3): 29-41.
图2 地质过程伴生的同位素分馏示意图(图(b)据文献[6,30]修改) a—典型地质物理化学过程分馏示意图;b—蒸发岩结晶过程中氯同位素的变化。
Fig.2 Schematic diagram of isotope fractionation associated with geological processes ((b) modified after [6,30])
图3 热液流体中不同温度下金属-氯的络合形式(据文献[117,119-120]修改)
Fig.3 The complex forms of metal chlorides at different temperatures in hydrothermal fluids. Modified after [117,119-120].
[1] |
SHARP Z D, SHEARER C K, MCKEEGAN K D, et al. The chlorine isotope composition of the Moon and implications for an anhydrous mantle[J]. Science, 2010, 329:1050-1053.
DOI URL |
[2] |
BANKS D A, GREEN R, CLIFF R A, et al. Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids[J]. Geochimica et Cosmochimica Acta, 2000, 64(10):1785-1789.
DOI URL |
[3] |
BERGLUND M, WIESER M E. Isotopic compositions of the elements 2009 (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83:397-410.
DOI URL |
[4] |
ALLEGRE C, MANHÈS G, LEWIN É. Chemical composition of the Earth and the volatility control on planetary genetics[J]. Earth and Planetary Science Letters, 2001, 185:49-69.
DOI URL |
[5] | MASON B. Principles of geochemistry[M]. New York: John Wiley and Sons, 1952. |
[6] | EGGENKAMP H G M. The geochemistry of stable chlorine and bromine isotopes[M]. Berlin: Springer, 2014. |
[7] |
MAGENHEIM A J, SPIVACK A J, MICHAEL P J, et al. Chlorine stable isotope composition of the oceanic crust: implications for Earth's distribution of chlorine[J]. Earth and Planetary Science Letters, 1995, 131(3/4):427-432.
DOI URL |
[8] |
KAUFMANN R, LONG A, BENTLEY H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309:338.
DOI URL |
[9] | GAUDETTE H E. Chlorine and boron isotopic analyses of Antarctic ice and snow: indicators of marine and volcanic atmospheric inputs[C]// Abstracts with Programs: Geological Society of America, Dallas, America, 1990: 173. |
[10] |
MAGENHEIM A J, SPIVACK A J, VOLPE C, et al. Precise determination of stable chlorine isotopic ratios in low-concentration natural samples[J]. Geochimica et Cosmochimica Acta, 1994, 58(14):3117-3121.
DOI URL |
[11] |
VOLPE C, SPIVACK A J. Stable chlorine isotopic composition of marine aerosol particles in the western Atlantic Ocean[J]. Geophysical Research Letters, 1994, 21(12):1161-1164.
DOI URL |
[12] |
EGGENKAMP H G M, KREULEN R, VAN GROOS A F K. Chlorine stable isotope fractionation in evaporites[J]. Geochimica et Cosmochimica Acta, 1995, 59(24):5169-5175.
DOI URL |
[13] |
WILLMORE CC, BOUDREAU A E, SPIVACK A, et al. Halogens of Bushveld Complex, South Africa: δ37Cl and Cl/F evidence for hydration melting of the source region in a back-arc setting[J]. Chemical Geology, 2002, 182(2/3/4):503-511.
DOI URL |
[14] |
GODON A, JENDRZEJEWSKI N, EGGENKAMP H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology, 2004, 207(1/2):1-12.
DOI URL |
[15] |
WEI H Z, JIANG S Y, ZHU Z Y, et al. Improvements on high-precision measurement of bromine isotope ratios by multicollector inductively coupled plasma mass spectrometry[J]. Talanta, 2015, 143:302-306.
DOI URL |
[16] |
EASTOE C J, GUILBERT J M, KAUFMANN R S. Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming hydrothermal systems[J]. Geology, 1989, 17(3):285-288.
DOI URL |
[17] |
BARNES J D, SHARP Z D. Chlorine isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):345-378.
DOI URL |
[18] |
WANG Y, HSU W B, GUAN Y B. An extremely heavy chlorine reservoir in the Moon: insights from the apatite in lunar meteorites[J]. Scientific Reports, 2019, 9(1):5727.
DOI URL |
[19] |
BOYCE J W, TREIMAN A H, GUAN Y, et al. The chlorine isotope fingerprint of the lunar magma ocean[J]. Science Advances, 2015, 1(8):e1500380.
DOI URL |
[20] |
SHARP Z, WILLIAMS J, SHEARER C, et al. The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars[J]. Meteoritics and Planetary Science, 2016, 51(11):2111-2126.
DOI URL |
[21] |
BELLUCCI J J, WHITEHOUSE M J, JOHN T, et al. Halogen and Cl isotopic systematics in Martian phosphates: implications for the Cl cycle and surface halogen reservoirs on Mars[J]. Earth and Planetary Science Letters, 2017, 458:192-202.
DOI URL |
[22] |
GLEESON S A, SMITH M P. The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates[J]. Geochimica et Cosmochimica Acta, 2009, 73(19):5658-5672.
DOI URL |
[23] |
RICHARD A, BANKS D A, MERCADIER J, et al. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2011, 75(10):2792-2810.
DOI URL |
[24] |
DESAULNIERS D E, KAUFMANN R S, CHERRY J A, et al. 37Cl-35Cl variations in a diffusion-controlled groundwater system[J]. Geochimica et Cosmochimica Acta, 1986, 50(8):1757-1764.
DOI URL |
[25] | KAUFMANN R S, FRAPE S K, FRITZ P, et al. Chlorine stable isotope composition of Canadian Shield brines[J]. Saline Water and Gases in Crystalline Rocks, 1987, 33:89-93. |
[26] |
STOTLER R L, FRAPE S K, SHOUAKAR-STASH O. An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields[J]. Chemical Geology, 2010, 274(1/2):38-55.
DOI URL |
[27] |
SIE P M J, FRAPE S K. Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes[J]. Chemical Geology, 2002, 182(2/3/4):565-582.
DOI URL |
[28] |
SHOUAKAR-STASH O, ALEXEEV S V, FRAPE S K, et al. Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia[J]. Applied Geochemistry, 2007, 22(3):589-605.
DOI URL |
[29] | KAUFMANN R S, LONG A, CAMPBELL D J. Chlorine isotope distribution in formation waters, Texas and Louisiana[J]. Advancing the World of Petroleum Geosciences Bulletin, 1988, 72(7):839-844. |
[30] | EGGENKAMP H G M. δ37Cl, the geochemistry of chlorine isotopes[D]. Utrecht: Utrecht University, 1994: 1-150. |
[31] |
ZIEGLER K, COLEMAN M L, HOWARTH R J. Palaeohydrodynamics of fluids in the Brent Group (Oseberg Field, Norwegian North Sea) from chemical and isotopic compositions of formation waters[J]. Applied Geochemistry, 2001, 16(6):609-632.
DOI URL |
[32] | BAGHERI R, RAEISI E. Hydrochemistry and sources of connate water in the Zagros aquifers[D]. Shiraz, Iran: Shiraz University, 2013. |
[33] |
BAGHERI R, NADRI A, RAEISI E, et al. Hydrochemistry and isotope (δ18O, δ2H,87Sr/86Sr, δ37Cl and δ81Br) applications: clues to the origin of saline produced water in a gas reservoir[J]. Chemical Geology, 2014, 384:62-75.
DOI URL |
[34] |
BAGHERI R, NADRI A, RAEISI E, et al. Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches[J]. Environmental Earth Sciences, 2014, 72(4):1055-1072.
DOI URL |
[35] | FABRYKA-MARTIN J T, WIGHTMAN S J, MURPHY W J, et al. Distribution of chlorine-36 in the unsaturated zone at Yucca Mountain: an indicator of fast transport paths[J]. Focus, 1993, 93:58-68. |
[36] |
LI X Q, ZHOU A G, LIU Y D, et al. Stable isotope geochemistry of dissolved chloride in relation to hydrogeology of the strongly exploited Quaternary aquifers, North China Plain[J]. Applied Geochemistry, 2012, 27(10):2031-2041.
DOI URL |
[37] |
LIU W G, XIAO Y K, WANG Q Z, et al. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China[J]. Chemical Geology, 1997, 136(3/4):271-279.
DOI URL |
[38] |
KOEHLER G, WASSENAAR L I. The stable isotopic composition (37Cl/35Cl) of dissolved chloride in rainwater[J]. Applied Geochemistry, 2010, 25(1):91-96.
DOI URL |
[39] | TAN H B, MA H Z, ZHANG X Y, et al. Fractionation of chlorine isotope in salt mineral sequences and application: research on sedimentary stage of ancient salt rock deposit in Tarim Basin and western Qaidam Basin[J]. Acta Petrologica Sinica, 2009, 25(4):955-962. |
[40] |
RANSOM B, SPIVACK A J, KASTNER M. Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine[J]. Geology, 1995, 23(8):715-718.
DOI URL |
[41] | SPIVACK A J, KASTNER M, RANSOM B. Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Trough[J]. Geophysical Research Letters, 2002, 29(14):1661. |
[42] |
GODON A, JENDRZEJEWSKI N, CASTREC-ROUELLE M, et al. Origin and evolution of fluids from mud volcanoes in the Barbados accretionary complex[J]. Geochimica et Cosmochimica Acta, 2004, 68(9):2153-2165.
DOI URL |
[43] |
GODON A, WEBSTER J D, LAYNE G D, et al. Secondary ion mass spectrometry for the determination of δ37Cl Part II. Intercalibration of SIMS and IRMS for aluminosilicate glasses[J]. Chemical Geology, 2004, 207(3/4):291-303.
DOI URL |
[44] |
BONIFACIE M, JENDRZEJEWSKI N, AGRINIER P, et al. Pyrohydrolysis-IRMS determination of silicate chlorine stable isotope compositions. Application to oceanic crust and meteorite samples[J]. Chemical Geology, 2007, 242(1/2):187-201.
DOI URL |
[45] |
BONIFACIE M, MONNIN C, JENDRZEJEWSKI N, et al. Chlorine stable isotopic composition of basement fluids of the eastern flank of the Juan de Fuca Ridge (ODP Leg 168)[J]. Earth and Planetary Science Letters, 2007, 260(1/2):10-22.
DOI URL |
[46] |
BONIFACIE M, BUSIGNY V, MÉVEL C, et al. Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes[J]. Geochimica et Cosmochimica Acta, 2008, 72(1):126-139.
DOI URL |
[47] |
BONIFACIE M, JENDRZEJEWSKI N, AGRINIER P, et al. The chlorine isotope composition of Earth's mantle[J]. Science, 2008, 319:1518-1520.
DOI URL |
[48] |
BARNES J D, SHARP Z D, FISCHER T P. Chlorine isotope variations across the Izu-Bonin-Mariana arc[J]. Geology, 2008, 36(11):883-886.
DOI URL |
[49] | BARNES J D, SELVERSTONE J, SHARP Z D. Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8):1-14. |
[50] |
BARNES J D, SHARP Z D. A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process[J]. Chemical Geology, 2006, 228(4):246-265.
DOI URL |
[51] |
BARNES J D, PAULICK H, SHARP Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209)[J]. Lithos, 2009, 110(1/2/3/4):83-94.
DOI URL |
[52] |
BARNES J D, ELDAM R, LEE C T A, et al. Petrogenesis of serpentinites from the Franciscan Complex, western California, USA[J]. Lithos, 2013, 178:143-157.
DOI URL |
[53] |
LAYNE G D, KENT A J R, BACH W. δ37Cl systematics of a backarc spreading system: the Lau Basin[J]. Geology, 2009, 37(5):427-430.
DOI URL |
[54] |
SHARP Z D, BARNES J D, BREARLEY A J, et al. Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites[J]. Nature, 2007, 446:1062-1065.
DOI URL |
[55] |
JOHN T, LAYNE G D, HAASE K M, et al. Chlorine isotope evidence for crustal recycling into the Earth's mantle[J]. Earth and Planetary Science Letters, 2010, 298(1/2):175-182.
DOI URL |
[56] | NAKAMURA N, FUJITANI T, KIMURA M. A new isotope tracer for the early solar system processes: stable chlorine isotopes and distribution of Cl-bearing phases in chondrites[C]// Proceedings of the 38th Lunar and Planetary Science Conference. Texas, America, 2007: 1707. |
[57] | SHARP Z D, SELVERSTONE J, MERCER J A. The Cl isotope composition of the mantle revisited[J]. Mineralogical Magazine, 2011, 75:1848. |
[58] | BOYCE J W, GUAN Y, TREIMAN A H, et al. Volatile components in the moon: abundances and isotope ratios of Cl and H in lunar apatites[C]// Proceedings of the 44th Lunar and Planetary Science Conference. Texas, America, 2013: 2851. |
[59] | MCCUBBIN F M, SHEARER C K, SHARP Z D. Magmatic volatile reservoirs on the moon and the chemical signatures of urKREEP[C]// Proceedings of the Second Conference on the Lunar Highlands Crust. Montana, America, 2012: 43-44. |
[60] | WANG Y, GUAN Y, HSU W, et al. Water content, chlorine and hydrogen isotope compositions of lunar apatite[C]// Proceedings of the 75th Annual Meeting of the Meteoritical-Society. Cairns, Australia, 2012: 397. |
[61] |
MCCUBBIN F M, VANDER KAADEN K E, TARTÈSE R, et al. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: abundances, distributions, processes, and reservoirs[J]. American Mineralogist, 2015, 100(8/9):1668-1707.
DOI URL |
[62] |
EASTOE C J, PERYT T M, PETRYCHENKO Y, et al. Stable chlorine isotopes in Phanerozoic evaporites[J]. Applied Geochemistry, 2007, 22(3):575-588.
DOI URL |
[63] |
EASTOE C J, PERYT T. Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region[J]. Terra Nova, 1999, 11(2/3):118-131.
DOI URL |
[64] |
EASTOE C J, LONG A, LAND L S, et al. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution[J]. Chemical Geology, 2001, 176(1/2/3/4):343-360.
DOI URL |
[65] | KAUFMANN R S. Chlorine in ground water: stable isotope distribution[D]. Tucson: The University of Arizona, 1984. |
[66] |
SHIRODKAR P V, XIAO Y K, SARKAR A, et al. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: implications for constancy in δ37Cl: a statistical inference[J]. Environment International, 2006, 32(2):235-239.
DOI URL |
[67] |
XIAO Y K, ZHOU Y M, WANG Q Z, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2/3/4):655-661.
DOI URL |
[68] |
KURODA P K, SANDELL E B. Chlorine in igneous rocks: some aspects of the geochemistry of chlorine[J]. Geological Society of America Bulletin, 1953, 64:879-896.
DOI URL |
[69] |
ARCURI T, BRIMHALL G. The chloride source for atacamite mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile[J]. Economic Geology, 2003, 98(8):1667-1681.
DOI URL |
[70] |
SELVERSTONE J, SHARP Z D. Chlorine isotope behavior during prograde metamorphism of sedimentary rocks[J]. Earth and Planetary Science Letters, 2015, 417:120-131.
DOI URL |
[71] |
SELVERSTONE J, SHARP Z D. Chlorine isotope constraints on fluid-rock interactions during subduction and exhumation of the Zermatt-Saas ophiolite[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10):4370-4391.
DOI URL |
[72] |
JOHN T, SCAMBELLURI M, FRISCHE M, et al. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle[J]. Earth and Planetary Science Letters, 2011, 308(1/2):65-76.
DOI URL |
[73] | KARGEL J S. Earth's volatility trend and the case of the missing halogens[C]// Abstracts with Programs: Geological Society of America, Salt Lake City, America, 1997: 190. |
[74] |
BARNES J J, TARTESE R, ANAND M, et al. Early degassing of lunar urKREEP by crust-breaching impact (s)[J]. Earth and Planetary Science Letters, 2016, 447:84-94.
DOI URL |
[75] |
WILLIAMS J T, SHEARER C K, SHARP Z D, et al. The chlorine isotopic composition of Martian meteorites 1: chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions[J]. Meteoritics and Planetary Science, 2016, 51(11):2092-2110.
DOI URL |
[76] |
SARAFIAN A R, JOHN T, ROSZJAR J, et al. Chlorine and hydrogen degassing in Vesta's magma ocean[J]. Earth and Planetary Science Letters, 2017, 459:311-319.
DOI URL |
[77] | CRANK J. The mathematics of diffusion[M]. London: Oxford University Press, 1956. |
[78] | LINDEMANN F A. Discussion on isotopes[J]. Proceeding of the Royal Society of London Series A, 1921, 99:102-104. |
[79] |
EGGENKAMP H G M, COLEMAN M L. The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes[J]. Geochimica et Cosmochimica Acta, 2009, 73(12):3539-3548.
DOI URL |
[80] | CAMPBELL D J. Fractionation of stable chlorine isotopes during transport through semipermeable membranes[D]. Tucson: The University of Arizona, 1985. |
[81] | 肖应凯, 刘卫国, 张崇耿. 盐湖中盐类矿物沉积过程中氯同位素效应的初步研究[J]. 盐湖研究, 1994, 3:35-40. |
[82] |
XIAO Y K, LIU W G, ZHOU Y M, et al. Isotopic compositions of chlorine in brine and saline minerals[J]. Chinese Science Bulletin, 1997, 42(5):406-409.
DOI URL |
[83] |
XIAO Y K, LIU W G, ZHOU Y M, et al. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China[J]. Chinese Journal of Oceanology and Limnology, 2000, 18(2):169-177.
DOI URL |
[84] | LIU W G, XIAO Y K, SUN D P, et al. A preliminary study of chlorine isotopic composition of salt lakes in the Qaidam Basin[J]. Chinese Science Bulletin, 1995 (8):699-700. |
[85] |
LUO C G, WEN H J, XIAO Y K, et al. Chlorine isotopes in sediments of the Qarhan Playa of China and their paleoclimatic significance[J]. Geochemistry, 2016, 76(1):149-156.
DOI URL |
[86] |
LUO C G, XIAO Y K, MA H Z, et al. Stable isotope fractionation of chlorine during evaporation of brine from a saline lake[J]. Chinese Science Bulletin, 2012, 57(15):1833-1843.
DOI URL |
[87] |
LUO C G, XIAO Y K, WEN H J, et al. Stable isotope fractionation of chlorine during the precipitation of single chloride minerals[J]. Applied Geochemistry, 2014, 47:141-149.
DOI URL |
[88] |
EVANS B W, HATTORI K, BARONNET A. Serpemtirite: what, why, where?[J]. Elements: 2013, 9:99-106.
DOI URL |
[89] |
JANECKY D R, SEYFREIED W E. Hydrothermal serpentinizaiton of peridotite whthin the oceanic crust: experimental investigations of mineralogy and major element chemistry[J]. Geochimica et Cosmochimica Acta, 1986, 50:1357-1378.
DOI URL |
[90] | 吴凯. 俯冲带内的熔流体作用: 来自蛇纹石化和渗滤交代过程的启示[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2018. |
[91] | MEVEL C. Serpentinization of abyssal peridotites at mid-ocean ridges[J]. Compets Rendus Geoscience, 2003, 335:825-852. |
[92] | DESCHAMPS F, GUILLOT S, GODARD M, et al. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones[J]. Chemical Geology, 2013, 121:262-277. |
[93] |
ANSELMI B, MELLINI M, VITI C. Chlorine in the Elba, MontiLivornesi and Murlo serpentines: evidence for seawater interaction[J]. European Journal of Mineralogy, 2000, 12(1):137-146.
DOI URL |
[94] | 黄瑞芳, 孙卫东, 丁兴, 等. 氯在蛇纹石化过程中的行为[C]// 2014年中国地球科学联合学术年会: 专题44: 造山带深部地质过程论文集. 北京, 2014: 2125-2126. |
[95] | TAN H B, MA H Z, XIAO Y K, et al. Characteristics of chlorine isotope distribution and analysis on sylvinite deposit formation based on ancient salt rock in the western Tarim Basin[J]. Science in China: Series D, 2005, 48(11):1913-1920. |
[96] | BLOCH M R, SCHNERB J. On the Cl-/Br- ratio and the distribution of Br ions in liquids and solids during evaporation of bromide-containing chloride solutions[J]. Bulletin of the Research Council of Israel, 1953, 3:151-158. |
[97] | MCCAFFREY M A, LAZAR B, HOLLAND H D. The evaporation path of seawater and the coprecipitation of Br (super-) and K (super+) with halite[J]. Journal of Sedimentary Research, 1987, 57(5):928-937. |
[98] |
FONTES J C, MATRAY J M. Geochemistry and origin of formation brines from the Paris Basin, France: 2. saline solutions associated with oil fields[J]. Chemical Geology, 1993, 109(1/2/3/4):177-200.
DOI URL |
[99] |
DAVIS S N, WHITTEMORE D O, FABRYKA-MARTIN J. Uses of chloride/bromide ratios in studies of potable water[J]. Groundwater, 1998, 36(2):338-350.
DOI URL |
[100] |
TAN H B, MA H Z, LI B K, et al. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos[J]. Chinese Science Bulletin, 2010, 55(27/28):3181-3188.
DOI URL |
[101] | KAUFMANN R S, MCNUTT R, FRAPE S K, et al. Chlorine stable isotope distribution of Michigan Basin and Canadian Shield formation waters [C]// Proceedings of the 7th International Symposium on Water-Rock Interaction. Park City, America, 1992: 943-946. |
[102] | EGGENKAMP H G M, COLEMAN M L. Heterogeneity of formation waters within and between oil fields by halogen isotopes[C]// Proceedings of the 9th International Symposium on Water-Rock Interaction. Taupo, New Zerland, 1998: 309-312. |
[103] |
EGGENKAMP H G M, MIDDELBURG J J, KREULEN R. Preferential diffusion of35Cl relative to37Cl in sediments of Kau Bay, Halmahera, Indonesia[J]. Chemical Geology, 1994, 116(3/4):317-325.
DOI URL |
[104] |
HENDRY M J, WASSENAAR L I, KOTZER T. Chloride and chlorine isotopes (36Cl and δ37Cl) as tracers of solute migration in a thick, clay-rich aquitard system[J]. Water Resources Research, 2000, 36(1):285-296.
DOI URL |
[105] |
NUMATA M, NAKAMURA N, KOSHIKAWA H, et al. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria[J]. Environmental Science and Technology, 2002, 36(20):4389-4394.
DOI URL |
[106] |
STURCHIO N C, HATZINGER P B, ARKINS M D, et al. Chlorine isotope fractionation during microbial reduction of perchlorate[J]. Environmental Science and Technology, 2003, 37(17):3859-3863.
DOI URL |
[107] |
ZHANG M, FRAPE S K, LOVE A J, et al. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia[J]. Applied Geochemistry, 2007, 22(3):557-574.
DOI URL |
[108] |
EASTOE C J. Stable chlorine isotopes in arid non-marine basins: instances and possible fractionation mechanisms[J]. Applied Geochemistry, 2016, 74:1-12.
DOI URL |
[109] |
NAHNYBIDA T, GLEESON S A, RUSK B G, et al. Cl/Br ratios and stable chlorine isotope analysis of magmatic-hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah[J]. Mineralium Deposita, 2009, 44(8):837.
DOI URL |
[110] |
EASTOE C J, GUILBERT J M. Stable chlorine isotopes in hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 1992, 56(12):4247-4255.
DOI URL |
[111] |
YARDLEY B W D. Metal concentrations in crustal fluids and their relationship to ore formation[J]. Economic Geology, 2005, 100:613-632.
DOI URL |
[112] | SEWARD T M, WILLIAMS-JONES A E, MIGDISOV A A. The chemistry of metal transport and deposition by ore-forming hydrothermal fluids[M]// HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Oxford: Elsevier, 2014: 29-57. |
[113] |
CHIARADIA M, BARNES J D, CADET-VOISIN S. Chlorine stable isotope variations across the Quaternary volcanic arc of Ecuador[J]. Earth and Planetary Science Letters, 2014, 396:22-33.
DOI URL |
[114] |
HEZARKHANI A, WILLIAMS-JONES A E, GAMMONS C H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 1999, 34(8):770-783.
DOI URL |
[115] |
RUSK B G, REED M H, DILLES J H, et al. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT[J]. Chemical Geology, 2004, 210(1/2/3/4):173-199.
DOI URL |
[116] |
KLEMM L M, PETTKE T, HEINRICH C A, et al. Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids[J]. Economic Geology, 2007, 102(6):1021-1045.
DOI URL |
[117] |
MIGDISOV A A, BYCHKOV A Y, WILLIAMS-JONES A E, et al. A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems: implications for copper porphyry ore formation[J]. Geochimica et Cosmochimica Acta, 2014, 129:33-53.
DOI URL |
[118] |
ARCHIBALD S M, MIGDISOV AA, WILLIAMS-JONES A E. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures[J]. Geochimica et Cosmochimica Acta, 2002, 66(9):1611-1619.
DOI URL |
[119] |
MIGDISOV A A, WILLIAMS-JONES A E. A predictive model for metal transport of silver chloride by aqueous vapor in ore-forming magmatic-hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2013, 104:123-135.
DOI URL |
[120] | LIU X D, LU X C, WANG R C, et al. Silver speciation in chloride-containing hydrothermal solutions from first principles molecular dynamics simulations[J]. Chemical Geology, 2012, 294:103-112. |
[121] |
SCHAUBLE E A, ROSSMAN G R, TAYLOR H P. Theoretical estimates of equilibrium chlorine-isotope fractionations[J]. Geochimica et Cosmochimica Acta, 2003, 67:3267-3281.
DOI URL |
[122] |
BRIDGES J C, BANKS D A, SMITH M, et al. Halite and stable chlorine isotopes in the Zag H3-6 breccia[J]. Meteoritics and Planetary Science, 2004, 39(5):657-666.
DOI URL |
[123] |
SHEARER C K, SHARP Z D, BURGER P V, et al. Chlorine distribution and its isotopic composition in “rusty rock” 66095. Implications for volatile element enrichments of “rusty rock” and lunar soils, origin of “rusty” alteration, and volatile element behavior on the Moon[J]. Geochimica et Cosmochimica Acta, 2014, 139:411-433.
DOI URL |
[124] |
DAY J M D, MOYNIER F. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372:20130259.
DOI URL |
[1] | 周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. |
[2] | 王泽洲, 刘盛遨, 李丹丹, 吕逸文, 吴松, 赵云. 铜同位素地球化学及研究新进展[J]. 地学前缘, 2015, 22(5): 72-83. |
[3] | 祝红丽, 张兆峰, 刘峪菲, 刘芳, 康晋霆. 钙同位素地球化学综述[J]. 地学前缘, 2015, 22(5): 44-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||