地学前缘 ›› 2020, Vol. 27 ›› Issue (6): 382-412.DOI: 10.13745/j.esf.sf.2020.10.28
所属专题: Research Articles (English)
• 古脊椎动物与环境 • 上一篇
SHU Degan, HAN Jian
收稿日期:
2020-07-10
接受日期:
2020-09-15
出版日期:
2020-11-02
发布日期:
2020-11-02
通信作者:
HAN Jian
基金资助:
Received:
2020-07-10
Accepted:
2020-09-15
Online:
2020-11-02
Published:
2020-11-02
1. 视频.mp4(5540KB)
摘要:
Well known for its abundant and extraordinary soft-tissue fossils, the Chengjiang fauna has witnessed the main phase of the Cambrian explosion and the first great congress of the ancestors of nearly all major phyla of animals on Earth. The large-scale survey and exploration of the fauna by Chinese paleontologists, partly in collaboration with international scientists, over the past 30 years can be broadly divided into three stages. In the first decade since 1984 (1984-1994), a large number of invertebrates, including basal animals and the protostomes of the early animal tree were discovered, but the subkingdom Deuterostomia was completely unknown. Then in the second decade (1995-2005), the great discoveries of various deuterostomes led to the construction of the basic framework of the Deuterostomia and then to the formation of the tripartite phylogenetic trees of early animals (TPTEA, including basal animals, protostomes and deuterostomes), for the first time. In the third decade (after 2005), the academic community began to think about the internal relationships between the formation of TPTEA and the multi-episode Cambrian explosion, leading to the new hypothesis of the three-episode Cambrian explosion. The Chengjiang fauna is important for deciphering the fauna structure, paleoecological environment, and so on. However, its core academic values mainly rest on two aspects. Firstly, The Chengjiang fauna, as the main phase witness of the Cambrian explosion, has created a nearly complete phylogenetic framework of the TPTEA on Earth for the first time. The three-phase radiation hypothesis reveals the essential connotation of the Cambrian explosion: a step-wise divergent evolution of animals, from basal to highly advanced groups, lasting about 40 million years. In the first phase, it gave birth to a bulk of basal animals (including some now extinct “animal” groups) in the latest Ediacaran, probably including some pioneer protostomes. The second phase took place in the first epoch of the Cambrian period (Terreneuvian), giving rise to the main invertebrate protostomes with a persistent prosperity of basal animals. The third phase proceeded in Cambrian Epoch 2 (represented by the Chengjiang fauna), which not only maintained the prosperity of basal animals and protostomes, but also, more importantly, gave birth to all the main phyla of the subkingdom Deuterostomia. Thus, the rudimental framework of the whole TPTEA has been shaped, with the termination of the major innovation events of the Cambrian explosion. Here, we discussed the evolutionary properties of Ediacaran biota, small shelly fossils and the Chengjiang fauna in the Cambrian explosion with emphasis on the biological properties of several important animal groups. The order Myllokunmingiida is the only known oldest vertebrate, while Yunnanozoon and Haikouella are neither vertebrates nor stem-group chordates but a special group of basal deuterostomes; Cheungkongella is a credible ancestor of the urochordate and it supports the classical hypothesis on the origin of the urochordates; and the gill slits were first invented in the members of the phylum Vetulicolia to provide key information on the origin of the deuterostomes. The second core value of the Chengjiang fauna is of profound humanistic and philosophical significance: the discoveries of the ‘first gill openings’, ‘first brain’, ‘first vertebrae’ and ‘first heart’ provide the pivotal evidence for solving the unsolved mystery of the origin of the main basic human organs as described in Darwin’s “The Descent of Man”. In addition, the morphological and anatomical information of the Chengjiang fauna can provide important clues for a better understanding of most components of Ediacaran and Cambrian metazoans.
SHU Degan, HAN Jian. Core value of the Chengjiang fauna: formation of the animal kingdom and the birth of basic human organs[J]. 地学前缘, 2020, 27(6): 382-412.
SHU Degan, HAN Jian. Core value of the Chengjiang fauna: formation of the animal kingdom and the birth of basic human organs[J]. Earth Science Frontiers, 2020, 27(6): 382-412.
Fig.1 Some basal animals and protostomes from the Chengjiang fauna a, Xianguangia sinica; b, Stromatoveris psygmoglena; c, Yuganotheca elegans; d, Cotyledion tylodes; e, Wiwaxia papilio; f, Triplicatella opimus; g, Eoredlichia intermedia; h, Fuxianhuia protensa; i, Lyrarapax unguispinus; j, Microdictyon sinicum; k, Diania cactiformis; l, Ankalodous sericus; m, Protosagitta spinosa; n, Ipoliknus avitus. (e, f, g, i, l, m, n adapted from[111],[207],[104],[143],[256],[90], and[90], respectively)
Fig.2 Deuterostomes from the Chengjiang fauna a, Vetulicola cuneata; b-c, Vetulicola rectangulata; c, Xidazoon stephanus; d, Didazoon haoae; e, Beidazoon venustum; g, Vetulocystis catenata; h, Dianchicystis jianshanensis; i, Cathaymyrus diadexus; j, Cheungkongella ancestralis; k, Yunnanozoon lividum; l, Haikouella jianshanensis; m, Myllokunmingia fengjiaoa; n, Haikouichthys ercaicunensis; o, Zhongjianichthys rostratus. (a, c, d, e, f, g, h, i, j, k, m, o adapted from[147],[153],[48],[147],[146],[47],[148],[49],[151],[46],[50], and[148], respectively)
Fig.6 The hypothesis of the three-episode Cambrian explosion based on molecular and paleontological evidence (Modified from[133]). The thick bars represent the temporal scope (not to scale) of the existing fossil record and the thin lines represent the presumed ancestors estimated by molecular biology and paleontology.
Fig.8 Saccorhytus from the earliest Cambrian Kuanchuanpu biota of southern Shaanxi a-b, side view (A)(ELIXX99-237) and side-ventral view (b)(ELIXX67-126) of different specimens observed by scanning electron microscopy. c-d, reconstruction of Saccorhytus. c, lateral view. d, ventral view. Modified from[129].
[1] | MANSUY H. Etude geologique du Yunnan Oriental, II Partie[J]. Memoires du Service Geologique de L'indochine, 1912, 1(2): 1-23. |
[2] | ZHANG W T, YUAN K X, ZHOU Z Y, et al. Carbonate biostratigraphy in Southwest China (Cambrian System in Southwest China)[M]. Beijing: Science Press, 1979(in Chinese). |
[3] | HUO S C, SHU D G. Cambrian Bradoriida of South China[M]. Xi'an: Northwest University Press, 1985(in Chinese with English summary). |
[4] | ZHANG W T, HOU X G. Preliminary notes on the occurrence of the unusual trilobite Naraoia in Asia[J]. Acta Palaeontologica Sinica, 1985, 24: 591-595(in Chinese with English abstract). |
[5] | HOU X G, BERGSTRÖM J. The arthropods of the Lower Cambrian Chengjiang Fauna, with relationships and evolutionary significance[M]//CONWAY M S, SIMONETTA A M. The early evolution of metazoan and the significance of problematic taxa. London: Cambridge University Press, 1989: 179-187. |
[6] | CHEN J Y, HOU X G, LU H Z. Early Cambrian net-bearing worm-like sea animal[J]. Acta Palaeontologica Sinica, 1989, 28(1): 1-16(in Chinese with English abstract). |
[7] | HOU X G. Three new large arthropods from Lower Cambrian Chengjiang, eastern Yunnan[J]. Acta Palaeontologica Sinica, 1987, 26(3): 272-285(in Chinese with English abstract). |
[8] | HOU X G, CHEN J Y. Early Cambrian tentacled worm-like animals (Facivermis gen. nov.) from Chengjiang, Yunnan, Southwest China[J]. Acta Palaeontologica Sinica, 1989, 28(1): 32-41(in Chinese with English abstract). |
[9] | HOU X G, CHEN J Y, LU H Z. Lower Cambrian Leptomitids (Demospongea), Chengjiang, Yunnan[J]. Acta Palaeontologica Sinica, 1989, 28(1): 17-30(in Chinese with English abstract). |
[10] | HOU X G, CHEN J Y, LU H Z. Early Cambrian new arthropods from Chengjiang, Yunnan[J]. Acta Palaeontologica Sinica, 1989, 28(1): 42-57(in Chinese with English abstract). |
[11] | HOU X G, SUN W G. Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan[J]. Acta Palaeontologica Sinica, 1987, 27(1): 1-12(in Chinese with English abstract). |
[12] | SUN W G, HOU X G. Early Cambrian medusae from Chengjiang, Yunnan, China[J]. Acta Palaeontologica Sinica, 1987, 26(3): 257-271(in Chinese with English abstract). |
[13] | SHU D G, ZHANG X G. Kuamaia, an Early Cambrian predatorfrom the Chengjiang fossil Lagerstätte[J]. Journal of Northwest University (Natural Science Edition), 1996(Suppl): 27-33. |
[14] |
SHU D G, ZHANG X, GEYER G. Anatomy and systematic affinities of the Lower Cambrian bivalved arthropod Isoxys auritus[J]. Alcheringa, 1995, 19: 333-342.
DOI URL |
[15] | LUO H L, ZHANG S S. Early Cambrian verms and trace fossils from Jinning-Anning Region, Yunnan[J]. Acta Palaeontologica Sinica, 1986, 25(3): 307-311(in Chinese with English abstract). |
[16] | SHU D G, CHEN L, ZHANG X L. The important discovery and significance of Chengjiang Lagerstätte[M]. Beijing: Peking University Press, 1993(in Chinese). |
[17] | SHU D G, CHEN L, ZHANG X L, et al. Early Cambrian KIN fauna of Chengjiang, Yunnan[J]. Journal of Northwest University (Natural Science Edition), 1992, 22(Suppl): 31-38(in Chinese with English abstract). |
[18] | SHU D G, GEYER G, CHEN L, et al. Redlichiacean trilobites with preserved soft-parts from the Lower Cambrian Chengjiang fauna (South China)[J]. Beringeria, 1995, 2(Special Issue): 203-241. |
[19] | CHEN L Z, LUO H L, HU S X, et al. Early Cambrian Chengjiang fauna in Eastern Yunnan, China[M]. Kunming: Yunnan Science and Technology Press, 2002(in Chinese). |
[20] | LUO H L, HU S X, CHEN L Z, et al. Early Cambrian Chengjiang fauna from Kunming region, China[M]. Kunming: Yunnan Science and Technology Press, 1999(in Chinese). |
[21] |
ZHANG X L, SHU D G, LI Y, et al. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion[J]. Journal of the Geological Society, London, 2001, 158(2): 211-218.
DOI URL |
[22] |
HOU X G. New rare bivalved arthropods from the Lower Cambrian Chengjiang fauna, Yunnan, China[J]. Journal of Paleontology, 1999, 73(1): 102-116.
DOI URL |
[23] |
HOU X G, BERGSTRÖM J, XU G.H. The Lower Cambrian crustacean Pectocaris from the Chengjiang Biota, Yunnan, China[J]. Journal of Paleontology, 2004, 78(4): 700-708.
DOI URL |
[24] | HOU X G, SIVETER D J, WILLIAMS M, et al. Appendages of the arthropod Kunmingella from the early Cambrian of China: its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 1996, 351(1344): 1131-1145. |
[25] |
ZHANG X L, HAN J, SHU D G. A new arthropod Pygmaclypeatus daziensis from the Early Cambrian Chengjiang Lagerstätte, South China[J]. Journal of Paleontology, 2000, 74(5): 979-982.
DOI URL |
[26] |
ZHANG X L, HAN J, SHU D G. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia[J]. Alcheringa, 2002, 26(1/2): 1-8.
DOI URL |
[27] |
ZHANG X L, HAN J, ZHANG Z F, et al. Reconsideration of the supposed naraoiid larva from the Early Cambrian Chengjiang Lagerstätte, South China[J]. Palaeontology, 2003, 46: 447-465.
DOI URL |
[28] |
ZHANG X L, SHU D G. A new arthropod from the Chengjiang Lagerstätte, Early Cambrian, southern China[J]. Alcheringa, 2005, 29(2): 185-194.
DOI URL |
[29] | HOU X G, BERGSTRÖM J. Three additional arthropods from the Lower Cambrian Chengjiang fauna, Yunnan, China[J]. Acta Palaeontologica Sinica, 1998, 37(4): 395-401(in Chinese with English abstract). |
[30] | HOU X G, BERGSTRÖM J. Arthropods of the Lower Cambrian Chengjiang fauna, Southwest China[J]. Fossils and Strata, 1997, 45(1): 1-116. |
[31] | ZHANG X L, SHU D G, ERWIN D H. Cambrian Naraoiids (Arthropoda): morphology, ontogeny, systematics, and evolutionary relationships[J]. Journal of Paleontology, 2017, 81(Suppl 68): 1-52. |
[32] |
CHEN J Y, HUANG D Y. A possible Lower Cambrian chaetognath (arrow worm)[J]. Science, 2002, 298(5591): 187.
DOI URL |
[33] |
CHEN J Y, HUANG D Y, BOTTJER D J. An Early Cambrian problematic fossil: Vetustovermis and its possible affinities[J]. Proceedings of the Royal Society B: Biological Sciences, 2005, 272(1576): 2003-2007.
DOI URL |
[34] |
CHEN J Y, ZHOU G Q, RAMSKOLD L. A new Early Cambrian onychophoran-like animal, Paucipodia gen. nov., from the Chengjiang fauna, China[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1995, 85(4): 275-282.
DOI URL |
[35] |
HOU X G, BERGSTRÖM J. Cambrian lobopodians: ancestors of extant onychophorans[J]. Zoological Journal of the Linnean Society, 1995, 114(1): 3-19.
DOI URL |
[36] |
HUANG D Y, CHEN J Y, VANNIER J, et al. Early Cambrian sipunculan worms from southwest China[J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271(1549): 1671-1676.
DOI URL |
[37] | ZHANG X G, HOU X G, EMIG C C. Evidence of lophophore diversity in early Cambrian brachiopoda[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(Suppl 1): S65-S68. |
[38] | ZHANG Z F, HAN J, ZHANG X L, et al. Pediculate brachiopod Diandongia pista from the Lower Cambrian of South China[J]. Acta Geologica Sinica(English Edition), 2003, 77(3): 288-293. |
[39] | CHEN J Y. The dawn of animal world[M]. Nanjing: Jiangsu Science and Technology Press, 2004: 366(in Chinese). |
[40] |
CHEN J Y, DZIK J, EDGECOMBE G D, et al. A possible Early Cambrian chordate[J]. Nature, 1995, 377(6551): 720-722.
DOI URL |
[41] | CHEN J Y, HUANG D Y, PENG Q Q, et al. The first tunicate from the Early Cambrian of South China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8314-8318. |
[42] |
HAN J, SHU D G, ZHANG Z F, et al. The earliest-known ancestors of recent priapulomorpha from the Early Cambrian Chengjiang Lagerstätte[J]. Chinese Science Bulletin, 2004, 49(17): 1860-1868.
DOI URL |
[43] | HOU X G, ALDRIDGE R J, SIVETER D J, et al. New evidence on the anatomy and phylogeny of the earliest vertebrates[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2002, 269(1503): 1865-1869. |
[44] |
HOU X G, STANLEY G, ZHAO J, et al. Cambrian anemones with preserved soft tissue from the Chengjiang biota, China[J]. Lethaia, 2005, 38(3): 193-203.
DOI URL |
[45] |
SHU D G, CONWAY M S, ZHANG Z F, et al. A new species of yunnanozoan with implications for deuterostome evolution[J]. Science, 2003, 299(5611): 1380-1384.
DOI URL |
[46] |
SHU D G, ZHANG X L, CHEN L. Reinterpretation of Yunnanozoon as the earliest known hemichordate[J]. Nature, 1996, 380(6573): 428-430.
DOI URL |
[47] |
SHU D G, CONWAY M S, HAN J, et al. Ancestral echinoderms from the Chengjiang deposits of China[J]. Nature, 2004, 430(6998): 422-428.
DOI URL |
[48] |
SHU D G, CONWAY MORRIS S, ZHANG X L, et al. A pipiscid-like fossil from the Lower Cambrian of South China[J]. Nature, 1999, 400(6746): 746-749.
DOI URL |
[49] |
SHU D G, CONWAY M S, ZHANG X L. A Pikaia-like chordate from the Lower Cambrian of China[J]. Nature, 1996, 384(6605): 157-158.
DOI URL |
[50] |
SHU D G, LUO H L, CONWAY M S, et al. Lower Cambrian vertebrates from South China[J]. Nature, 1999, 402(6757): 42-46.
DOI URL |
[51] |
ZHANG X G, HOU X G. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys ercaicunensis[J]. Journal of Evolutionary Biology, 2004, 17(5): 1162-1166.
DOI URL |
[52] |
CHEN J Y. Early crest animals and the insight they provide into the evolutionary origin of craniates[J]. Genesis, 2008, 46(11): 623-639.
DOI URL |
[53] |
HOU X G, BERGSTRÖM J, JIE Y. Distinguishing anomalocaridids from arthropods and priapulids[J]. Geological Journal, 2006, 41(3/4): 259-269.
DOI URL |
[54] |
HOU X G, CLARKSON E N K, YANG J, et al. Appendages of early Cambrian Eoredlichia (Trilobita) from the Chengjiang biota, Yunnan, China[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 99: 213-223.
DOI URL |
[55] |
HOU X G, WILLIAMS M, GABBOTT S, et al. A new species of the artiopodan arthropod Acanthomeridion from the lower Cambrian Chengjiang Lagerstätte, China, and the phylogenetic significance of the genus[J]. Journal of Systematic Palaeontology, 2017, 15(9): 733-740.
DOI URL |
[56] |
HOU X G, WILLIAMS M, SANSOM R, et al. A new xandarellid euarthropod from the Cambrian Chengjiang biota, Yunnan Province, China[J]. Geological Magazine, 2019, 156(8): 1375-1384.
DOI URL |
[57] |
HOU X G, WILLIAMS M, SIVETER D J, et al. Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida[J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1689): 1835-1841.
DOI URL |
[58] | LIU Y, MELZE R R, HAUG JT, et al. Three dimensionally preserved minute larva of a great appendage arthropod from the Early Cambrian Chengjiang biota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(20): 5542-5546. |
[59] |
MA X Y, HOU X G, EDGECOMBE G D, et al. Complex brain and optic lobes in an early Cambrian arthropod[J]. Nature, 2012, 490(7419): 258-261.
DOI URL |
[60] |
ZHANG X L, FU D J, DAI T. A new species of Kangacaris (Arthropoda) from the Chengjiang Lagerstätte, Lower Cambrian, Southwest China[J]. Alcheringa, 2012, 36(1): 23-25.
DOI URL |
[61] |
ZHANG X L, FU D J, DAI T. A new xandarellid arthropod from the Chengjiang Lagerstätte, Lower Cambrian of Southwest China[J]. Geobios, 2012, 45(3): 335-338.
DOI URL |
[62] |
ZHANG Z F, LI G X, EMIG C C, et al. Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China)[J]. Geobios, 2009, 42(5): 649-661.
DOI URL |
[63] | ZHANG Z, WANG Y, WANG Y, et al. Life strategies of Early Cambrian brachiopods on mud substrate: inferences from the Chengjiang fauna of South China[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(6): 1018-1025(in Chinese with English abstract). |
[64] |
ZHANG Z F, HAN J, ZHANG X L, et al. Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata, Brachiopoda) from southern China[J]. Acta Zoologica, 2007, 88(1): 65-70.
DOI URL |
[65] | ZHANG Z F, HAN J, ZHANG X L, et al. Soft-tissue preservation in the Lower Cambrian linguloid brachiopod from South China[J]. Acta Palaeontologica Polonica, 2004, 49(2): 259-266. |
[66] | HAN J, LIU J N, ZHANG Z F, et al. Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of China[J]. Acta Palaeontologica Polonica, 2007, 52(2): 423-431. |
[67] |
HAN J, YAO Y, ZHANG Z F, et al. New observations on the palaeoscolecid worm Tylotites petiolaris from the Cambrian Chengjiang Lagerstätte, South China[J]. Paleontological Research, 2007, 11(1): 59-69.
DOI URL |
[68] | HAN J, ZHANG X L, ZHANG Z F, et al. A new theca-bearing Early Cambrian worm from the Chengjiang fossil Lagerstätte, China[J]. Alcheringa, 2006, 30(1): 1-10. |
[69] |
HAN J, ZHANG Z F, LIU J N, et al. Evidence of priapulid scavenging from the early Cambrian Chengjiang deposits, Southern China[J]. Palaios, 2007, 22(6): 691-694.
DOI URL |
[70] |
HUANG D Y, CHEN J Y, ZHU M Y, et al. The burrow dwelling behavior and locomotion of palaeoscolecidian worms: new fossil evidence from the Cambrian Chengjiang fauna[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 154-164.
DOI URL |
[71] |
MA X Y, ALDRIDGE R J, SIVETER D J, et al. A new exceptionally preserved Cambrian priapulid from the Chengjiang Lagerstätte[J]. Journal of Paleontology, 2014, 88(2): 371-384.
DOI URL |
[72] |
LIU J N, STEINER M, DUNLOP J A, et al. An armoured Cambrian lobopodian from China with arthropod-like appendages[J]. Nature, 2011, 470(7335): 526-530.
DOI URL |
[73] |
LIU J N, HAN J, SIMONETTA A M, et al. New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte[J]. Chinese Science Bulletin, 2006, 51(3): 358-363.
DOI URL |
[74] | LIU J N, SHU D, HAN J, et al. A large xenusiid lobopod with complex appendages from the Lower Cambrian Chengjiang Lagerstätte[J]. Acta Palaeontologica Polonica, 2006, 51(2): 215-222. |
[75] |
LIU J N, SHU D G, HAN J, et al. Comparative study of Cambrian lobopods Miraluolishania and Luolishania[J]. Chinese Science Bulletin, 2008, 53(1): 87-93.
DOI URL |
[76] |
LIU J N, SHU D G, HAN J, et al. A rare lobopod with well preserved eyes from Chengjiang Lagerstätte and its implications for origin of arthropods[J]. Chinese Science Bulletin, 2004, 49(10): 1063-1071.
DOI URL |
[77] |
LIU J N, SHU D G, HAN J, et al. The lobopod Onychodictyon from the Lower Cambrian Chengjiang Lagerstätte revisited[J]. Acta Palaeontologica Polonica, 2008, 53(2): 285-292.
DOI URL |
[78] |
LIU J N, SHU D G, HAN J, et al. Morpho-anatomy of the lobopod Magadictyon cf. haikouensis from the Early Cambrian Chengjiang Lagerstätte, South China[J]. Acta Zoologica, 2007, 88(4): 279-288.
DOI URL |
[79] | LIU J N, STEINER M, DUNLOP J A, et al. Phylogenetic position of Diania challenged Lobopodian phylogeny reanalysed Reply[J]. Nature, 2011, 476(7359): E3-E4. |
[80] | MA X Y, HOU X G, ALDRIDGE R J, et al. Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance[J]. Arthropod Structure & Development, 2012, 41(5): 495-504. |
[81] | MA X, HOU X, BERGSTRÖM J. Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SW China) and the phylogenetic relationships within lobopodians[J]. Arthropod Structure & Development, 2009, 38(4): 271-291. |
[82] |
MA X Y, EDGECOMBE G D, LEGG D A, et al. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis[J]. Journal of Systematic Palaeontology, 2014, 12(4): 445-457.
DOI URL |
[83] |
DAI T, ZHANG X L. Ontogeny of the redlichiid trilobite Eoredlichia intermediata from the Chengjiang Lagerstätte, Lower Cambrian, Southwest China[J]. Lethaia, 2013, 46(2): 262-273.
DOI URL |
[84] |
FU D J, ZHANG X L, BUDD G E, et al. Ontogeny and dimorphism of Isoxys auritus (Arthropoda) from the Early Cambrian Chengjiang biota, South China[J]. Gondwana Research, 2014, 25(3): 975-982.
DOI URL |
[85] |
LIU Y, HAUG J T, HAUG C, et al. A 520 million-year-old chelicerate larva[J]. Nature Communications, 2014, 5: 4440.
DOI URL |
[86] |
LIU Y, ORTEGA-HERNÁNDEZ J, ZHAI D Y, et al. A reduced labrum in a Cambrian great-appendage euarthropod[J]. Current Biology. DOI: 202010.1016/j.cub.2020.05.085.
DOI |
[87] |
LIU Y, SCHOLTZ G, HOU X G. When a 520 million-year-old Chengjiang fossil meets a modern micro-CT: a case study[J]. Scientific Reports, 2015, 5(1): 12802.
DOI URL |
[88] |
ZHAI D Y, ORTEGA-HERNÁNDEZ J, WOLFE J M, et al. Three-dimensionally preserved appendages in an Early Cambrian stem-group Pancrustacean[J]. Current Biology, 2019, 29(1): 171-177.
DOI URL |
[89] |
ZHAI D Y, WILLIAMS M, SIVETER D J, et al. Variation in appendages in early Cambrian bradoriids reveals a wide range of body plans in stem-euarthropods[J]. Communications Biology, 2019, 2(1): 329.
DOI URL |
[90] |
HAN J, SIMON C M, CUTHILL J F, et al. Sclerite-bearing annelids from the Lower Cambrian of South China[J]. Scientific Reports, 2019, 9(1): 4955.
DOI URL |
[91] | HOU X G, WILLIAMS M, SIVETER D J, et al. A chancelloriid-like metazoan from the early Cambrian Chengjiang Lagerstätte, China[J]. Scientific Reports, 2014, 4: 1-6. |
[92] |
ZHANG Z F, HOLMER L E, SKOVSTED C B, et al. A sclerite-bearing stem group entoproct from the early Cambrian and its implications[J]. Scientific Reports, 2013, 3: 1066.
DOI URL |
[93] |
HAN J, SHU D G, ZHANG Z F, et al. Preliminary notes on soft-bodied fossil concentrations from the Early Cambrian Chengjiang deposits[J]. Chinese Science Bulletin, 2006, 51(20): 2482-2492.
DOI URL |
[94] | HU S X. Taphonomy and palaeoecology of the Early Cambrian Chengjiang biota from eastern Yunnan, China[J]. Berliner Palaobiologische Abhandlungen, 2005, 7: 182-185. |
[95] |
VANNIER J, CHEN J Y. Early Cambrian Food Chain: new evidence from fossil aggregates in the Maotianshan Shale Biota, SW China[J]. Palaios, 2005, 20(1): 3-26.
DOI URL |
[96] |
VANNIER J, GARCIA-BELLIDO D C, HU S X, et al. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1667): 2567-2574.
DOI URL |
[97] |
VANNIER J, STEINER M, RENVOISE E, et al. Early Cambrian origin of modern food webs: evidence from predator arrow worms[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1610): 627-633.
DOI URL |
[98] |
ZHANG Z F, HOLMER L E, ROBSON S P, et al. First record of repaired durophagous shell damages in Early Cambrian lingulate brachiopods with preserved pedicles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302(3/4): 206-212.
DOI URL |
[99] |
ZHAO F C, BOTTJER D J, HU S X, et al. Complexity and diversity of eyes in Early Cambrian ecosystems[J]. Scientific Reports, 2013, 3(1): 2751.
DOI URL |
[100] |
ZHAO F C, CARON J B, BOTTJER D J, et al. Diversity and species abundance patterns of the Early Cambrian (Series 2, Stage 3) Chengjiang Biota from China[J]. Paleobiology, 2014, 40(1): 50-69.
DOI URL |
[101] |
ZHAO F C, CARON J B, HU S X, et al. Quantitative analysis of taphofacies and paleocommunities in the Early Cambrian Chengjiang Lagerstätte[J]. Palaios, 2009, 24(12): 826-839.
DOI URL |
[102] |
ZHAO F C, ZHU M Y, HU S X. Community structure and composition of the Cambrian Chengjiang biota[J]. Science China: Earth Sciences, 2010, 53(12): 1784-1799.
DOI URL |
[103] |
ZHAO F C, HU S X, CARON J B, et al. Spatial variation in the diversity and composition of the Lower Cambrian (Series 2, Stage 3) Chengjiang Biota, Southwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346/347: 54-65.
DOI URL |
[104] | CHENG M R, HAN J, OU Q, et al. Injured trilobite Eoredlichia intermedia from the early Cambrian Chengjiang biota[J]. Acta Palaeontologica Sinica, 2019, 58(4): 425-435(in Chinese with English abstract). |
[105] |
MALLATT J, CHEN J Y. Fossil sister group of craniates: predicted and found[J]. Journal of Morphology, 2003, 258(1): 1-31.
DOI URL |
[106] | HAN J, ZHANG Z F, LIU J N. Taphonomy and ecology of the introverts in Chengjiang fauna[J]. Journal of Northwest University (Natural Science Edition), 2004, 34(2): 207-212(in Chinese with English abstract). |
[107] | CONG P Y, MA X Y, WILLIAMS M, et al. Host-specific infestation in early Cambrian worms[J]. Nature Ecology & Evolution, 2017, 1(10): 1465-1469. |
[108] |
ZHANG Z F, STROTZ L C, TOPPER T P, et al. An encrusting kleptoparasite-host interaction from the early Cambrian[J]. Nature Communications, 2020, 11(1): 2625.
DOI URL |
[109] | QIAN Y. Taxonomy and biostratigraphy of small shelly fossils in China[M]. Beijing: Science Press, 1999(in Chinese). |
[110] |
ZHANG X G, ALDRIDGE R J. Development and diversification of trunk plates of the Lower Cambrian lobopodians[J]. Palaeontology, 2007, 50: 401-415.
DOI URL |
[111] |
ZHANG Z F, SMITH M R, SHU D G. New reconstruction of the Wiwaxia scleritome, with data from Chengjiang juveniles[J]. Scientific Reports, 2015, 5: 14810.
DOI URL |
[112] |
FU D J, TONG G H, DAI T, et al. The Qingjiang biota?A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China[J]. Science, 2019, 363(6433): 1338-1342.
DOI URL |
[113] | DUAN Y H, HAN J, ZHANG Z F, et al. Comparative research on Cambrian Burgess Shale-type soft-bodied fossil biotas in South China[J]. Journal of Northwest University (Natural Science Edition), 2012, 42(2): 287-295(in Chinese with English abstract). |
[114] |
XIAO S H, HU J, YUAN X L, et al. Articulated sponges from the Lower Cambrian Hetang Formation in southern Anhui, South China: their age and implications for the early evolution of sponges[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(1/2): 89-117.
DOI URL |
[115] | BRIGGS D, COLLIER F, ERWIN D. The fossils of the Burgess Shale[M]. Washington D C: Smithsonian Institution Press, 1994. |
[116] |
CARON J B, GAINES R R, MáNGANO M G, et al. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies[J]. Geology, 2010, 38(9): 811-814.
DOI URL |
[117] | ZHAO Y L, ZHU M Y, BABCOCK L E, et al. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian, Guizhou, China[J]. Acta Geologica Sinica(English Edition), 2005, 79(6): 751-765. |
[118] | ZHU X J, PENG S C, ZAMORA S, et al. Furongian (upper Cambrian) Guole Konservat-Lagerstätte from South China[J]. Acta Geologica Sinica(English Edition), 2016, 90(1): 30-37. |
[119] | HU S X, ZHU M Y, LUO H L, et al. Guanshan biota[M]. Kunming: Yunnan Science and Technology Press, 2013(in Chinese). |
[120] |
CHEN J Y, BOTTJER D J, OLIVERI P, et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian[J]. Science, 2004, 305(5681): 218-222.
DOI URL |
[121] |
YIN Z J, VARGAS K, CUNNINGHAM J, et al. The Early Ediacaran Caveasphaera foreshadows the evolutionary origin of animal-like embryology[J]. Current Biology, 2019, 29(24): 4307-4314.
DOI URL |
[122] |
YIN Z J, ZHAO D, PAN B, et al. Early Cambrian animal diapause embryos revealed by X-ray tomography[J]. Geology, 2018, 46(5): 387-390.
DOI URL |
[123] |
YIN Z J, LIU P J, LI G, et al. Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis[J]. Gondwana Research, 2014, 25(3): 1019-1026.
DOI URL |
[124] | YIN Z J, ZHU M Y, DAVIDSON E H, et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1453-E1460. |
[125] |
ZHANG X L, BRIGGS D E G. The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale[J]. Lethaia, 2007, 40(2): 161-173.
DOI URL |
[126] |
ZHU M Y, ZHURAVLEV A Y, WOOD R A, et al. A deep root for the Cambrian explosion: implications of new bio- and chemostratigraphy from the Siberian Platform[J]. Geology, 2017, 45(5): 459-462.
DOI URL |
[127] |
ISOZAKI Y, SHU D G, MAYUYAMA S, et al. Beyond the Cambrian Explosion: from galaxy to genome[J]. Gondwana Research, 2014, 25: 881-883.
DOI URL |
[128] |
LI G X, STEINER M, ZHU X J, et al. Early Cambrian metazoan fossil record of South China: generic diversity and radiation patterns[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 229-249.
DOI URL |
[129] |
SHU D G, ISOZAKI Y, ZHANG X L, et al. Birth and early evolution of metazoans[J]. Gondwana Research, 2014, 25(3): 884-895.
DOI URL |
[130] |
WOOD R. Exploring the drivers of early biomineralization[J]. Emerging Topics in Life Sciences, 2018, 2(2): 201-212.
DOI URL |
[131] | WOOD R, LIU A G, BOWYER F, et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion[J]. Nature Ecology & Evolution, 2019, 3: 528-538. |
[132] |
ZHANG X L, SHU D G. Causes and consequences of the Cambrian explosion[J]. Science China: Earth Sciences, 2013, 57(5): 930-942.
DOI URL |
[133] |
ZHANG X L, SHU D G, HAN J, et al. Triggers for the Cambrian Explosion: hypotheses and problems[J]. Gondwana Research, 2014, 25: 896-909.
DOI URL |
[134] | ZHU M Y. The origin and Cambrian Explosion of animals: fossil evidences from China[J]. Acta Palaeontologica Sinica, 2010, 49(3): 269-287(in Chinese with English abstract). |
[135] | ZHU M Y, ZHAO F C, YIN Z J, et al. The Cambrian explosion: Advances and perspectives from China[J]. Science China: Earth Sciences, 2019, 49(10): 1455-1490(in Chinese with English abstract). |
[136] | SHU D G, CONWAY M S, ZHANG X L, et al. The distant ancestors of humans at the Cambrian Explosion[M]. Xi'an: Northwest University Press, 2015(in Chinese). |
[137] | HOU X G, ADRIDGE R J, BERGSTRÖM J, et al. The Cambrian fossils of Chengjiang, China: The Flowering of Early Animal Life[M]. 2nd ed. Oxford: Blackwell Science, 2017. |
[138] | YANG X F, VINN O, HOU X G, et al. New tubicolous problematic fossil with some “lophophorate” affinities from the Early Cambrian Chengjiang biota in south China[J]. Geologiska Freningen I Stockholm Frhandlingar, 2013, 135(2): 184-190. |
[139] |
SHU D G, CONWAY MORRIS S, HAN J, et al. Lower Cambrian vendobionts from China and early diploblast evolution[J]. Science, 2006, 312(5774): 731-734.
PMID |
[140] | ZHANG W T, BABCOCK L E. New extraordinary preserved enigmatic fossils, possibly with Ediacaran affinities, from the lower Cambrian of Yunnan, China[J]. Acta Palaeontologica Sinica, 2001, 40(Suppl): 201-213(in Chinese with English abstract). |
[141] |
CONG P Y, HARVEY T H P, WILLIAMS M, et al. Naked chancelloriids from the lower Cambrian of China show evidence for sponge-type growth[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285: 20180296.
DOI URL |
[142] | BENGTSON S, CONWAY MORRIS S, COOPER B, et al. Early Cambrian fossils from south Australia[J]. Memoirs of the Association of Australasian Palaeontologists, 1990, 9: 1-364. |
[143] |
SHU D G, CONWAY M S, HAN J, et al. Multi-jawed chaetognaths from the Chengjiang Lagerstätte (Cambrian, Series 2, Stage 3) of Yunnan, China[J]. Palaeontology, 2017, 60(6): 763-772.
DOI URL |
[144] | SZANIAWSKI H. Chaetognath grasping spines recognized among Cambrian protoconnodonts[J]. Journal of Palaeontology, 1982, 56: 806-810. |
[145] | CHEN A L, FENG H Z, ZHU M Y, et al. A new vetulicolian from the Early Cambrian Chengjiang Fauna in Yunnan of China[J]. Acta Geologica Sinica(English Edition), 2003, 77(3): 281-287. |
[146] |
SHU D G. On the phylum Vetulicolia[J]. Chinese Science Bulletin, 2005, 50(20): 2342-2354.
DOI URL |
[147] |
SHU D G, CONWAY M S, HAN J, et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China)[J]. Nature, 2001, 414(6862): 419-424.
DOI URL |
[148] |
SHU D G. A paleontological perspective of vertebrate origin[J]. Chinese Science Bulletin, 2003, 48(8): 725-735.
DOI URL |
[149] |
SHU D G, CONWAY M S, HAN J, et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys[J]. Nature, 2003, 421(6922): 526-529.
DOI URL |
[150] |
LUO H L, HU S X, CHEN A L. New Early Cambrian chordates from Haikou, Kunming[J]. Acta Geologica Sinica (English Edition), 2001, 75(4): 345-348.
DOI URL |
[151] |
SHU D G, CHEN L, HAN J, et al. An Early Cambrian tunicate from China[J]. Nature, 2001, 411(6836): 472-473.
DOI URL |
[152] |
SHU D G, CONWAY M S, ZHANG Z F, et al. The earliest history of the deuterostomes: the importance of the Chengjiang Fossil-Lagerstätte[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 277(1679): 165-174.
DOI URL |
[153] |
OU Q, CONWAY MORRIS S, HAN J, et al. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes[J]. BMC Evolutionary Biology, 2012, 10(1): 81.
DOI URL |
[154] |
CHEN J Y. The origins and key innovations of vertebrates and arthropods[J]. Palaeoworld, 2011, 20(4): 257-278.
DOI URL |
[155] |
CHEN J Y. Early crest animals and the insight they provide into the evolutionary origin of craniates[J]. Genesis, 2008, 46(11): 623-639.
DOI URL |
[156] |
CHEN J Y, HUANG D Y, LI C W. An early Cambrian craniate-like chordate[J]. Nature, 1999, 402(6761): 518-522.
DOI URL |
[157] | CHEN J Y, LI C W. Distant ancestor of mankind unearthed: 520 million year-old fish-like fossils reveal early history of vertebrates[J]. Science Progress, 2000, 83(2): 123-133. |
[158] |
CONG P Y, HOU X G, ALDRIDGE R J, et al. New data on the palaeobiology of the enigmatic yunnanozoans from the Chengjiang biota, Lower Cambrian, China[J]. Palaeontology, 2015, 58(1): 45-70.
DOI URL |
[159] |
SHU D G. Cambrian Explosion: birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
DOI URL |
[160] | SHU D G, ZHANG X L, HAN J, et al. Restudy of Cambrian Explosion and formation of animal tree[J]. Acta Palaeontologica Sinica, 2009, 48(3): 414-427(in Chinese with English abstract). |
[161] | HAN J, GUO J F, OU Q, et al. Evolutionary framework of early Cambrian cnidarians in South China[J]. Earth Science Frontiers, 2020, 27(6): 67-78(in Chinese with English abstract). |
[162] | DING Q X, CHEN Y Y. Discovery of soft metazoan from the Sinian System along eastern Yangtze Gorge, Hubei[J]. Earth Science, 1981, 2: 53-57(in Chinese with English abstract). |
[163] | DING L F, LI Y, HU X S, et al. Sinian Miaohe biota[M]. Beijing: Geological Publishing House, 1996. |
[164] | CHEN M E, XIAO Z Z. Discovery of the macrofossils in the Upper Sinian Doushantuo Formation at Miaohe, Eastern Yangtze Gorges[J]. Scientia Geologica Sinica, 1991, 36(4): 317-324(in Chinese with English abstract). |
[165] | ZHANG L Y. A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang County, Shaanxi[J]. Bulletin of the Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1986, 13: 67-88(in Chinese with English abstract). |
[166] |
YUAN X L, CHEN Z, XIAO S H, et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes[J]. Nature, 2011, 470(7334): 390-393.
DOI URL |
[167] | ZHAO Y L, HE M H, CHEN M E, et al. Discovery of a Miaohe-type Biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China[J]. Chinese Science Bulletin, 2004, 49(1): 1-3(in Chinese with English abstract). |
[168] |
YUAN X L, XIAO S H, PARSLEY R L, et al. Towering sponges in an Early Cambrian Lagerstätte: disparity between non-bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition[J]. Geology, 2002, 30: 363-366.
DOI URL |
[169] |
DONG X P, DONOGHUE P C J, CHENG H, et al. Fossil embryos from the Middle and Late Cambrian period of Hunan, South China[J]. Nature, 2004, 427(6971): 237-240.
DOI URL |
[170] | YANG J, ORTEGA-HERNANDEZ J, BUTTERFIELD N J, et al. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2988-2993. |
[171] |
YANG J, SMITH M R, LAN T, et al. Articulated Wiwaxia from the Cambrian Stage 3 Xiaoshiba Lagerstätte[J]. Scientific Reports, 2014, 4(1): 4643.
DOI URL |
[172] | BALINSKI A, SUN Y L. Fenxiang biota: a new Early Ordovician shallow-water fauna with soft-part preservation from China[J]. Chinese Science Bulletin, 2015, 60(8): 812-818. |
[173] |
ZHANG X L, LIU W, ZHAO Y L. Cambrian Burgess Shale-type Lagerstätten in South China: distribution and significance[J]. Gondwana Research, 2008, 14(1-2): 255-262.
DOI URL |
[174] |
ZHU X J, LEROSEY-AUBRIL R, ORTEGA-HERNÁNDEZ J. Occurrence of the aglaspidid arthropod Beckwithia in the Furongian Guole Konservat-Lagerstätte of South China[J]. Palaeoworld, 2019, 28(1/2): 73-79.
DOI URL |
[175] |
PENG S C, YANG X F, LIU Y, et al. Fulu biota, a new exceptionally-preserved Cambrian fossil assemblage from the Longha Formation in southeastern Yunnan[J]. Palaeoworld, 2020. DOI: 10.1016/j.palwor.2020.02.001.
DOI |
[176] | COYNE J A. Why evolution is true?[M]. New York: The Penguin Group, 2010. |
[177] | DAWKINS C R, WONG Y. The ancestor's tale: a pilgrimage to the dawn of evolution[M]. Boston: Houghton Mifflin, 2016. |
[178] |
BROCKS J J, JARRETT A J M, SIRANTOINE E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548(7669): 578-581.
DOI URL |
[179] |
BUTTERFIELD N J. Probable proterozoic fungi[J]. Paleobiology, 2005, 31(1): 165-182.
DOI URL |
[180] |
BUTTERFIELD N J, LOMAX B. Proterozoic photosynjournal: a critical review[J]. Palaeontology, 2015, 58(6): 953-972.
DOI URL |
[181] |
SCHIRRMEISTER B E, SANCHEZ-BARACALDO P, WACEY D. Cyanobacterial evolution during the Precambrian[J]. International Journal of Astrobiology, 2016, 15(3): 187-204.
DOI URL |
[182] | SCHOPF J W. Microflora of the Bitter Springs Formation, late precambrian, central Australia[J]. Journal of Paleontology, 1968, 42(3): 651-688. |
[183] |
HAN J, CONWAY M S, OU Q, et al. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)[J]. Nature, 2017, 542(7640): 228-231.
DOI URL |
[184] |
FRIEDMAN R, HUGHES A L. Pattern and timing of gene duplication in animal genomes[J]. Genome Research, 2001, 11(11): 1842-1847.
DOI URL |
[185] | SATOH N. Chordate origin and evolution: The Molecular evolutionary road to vertebrate[M]. London: Sara Tenney, 2016. |
[186] |
ZHU M, YU X, AHLBERG P E, et al. A Silurian placoderm with osteichthyan-like marginal jaw bones[J]. Nature, 2013, 502(7470): 188-193.
DOI URL |
[187] | FEDONKIN M, GEHLING J, GREY K, et al. The rise of animals: evolution and diversification of the kingdom animalia[M]. Baltimore: The Johns Hopkins University Press, 2007. |
[188] |
ERWIN D H, LAFLAMME M, TWEEDT S M, et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097.
DOI URL |
[189] |
RETALLACK G J. Were the Ediacaran fossils lichens[J]. Paleobiology, 1994, 20(4): 523-544.
DOI URL |
[190] |
PETERSON K J, WAGGONER B, HAGADORN J W. A fungal analog for Newfoundland Ediacaran fossils?[J]. Integrative and Comparative Biology, 2003, 43(1): 127-136.
DOI URL |
[191] |
GEHLING J G, RIGBY J K. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia[J]. Journal of Paleontology, 1996, 70(2): 185-195.
DOI URL |
[192] |
IVANTSOV A Y, FEDONKIN M A. Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Palaeozoic boundary[J]. Palaeontology, 2002, 45: 1219-1229.
DOI URL |
[193] |
LIU A G, MATTHEWS J J, MENON L R, et al. Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)[J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1793): 20141202.
DOI URL |
[194] |
FEDONKIN M A, WAGGONER B M. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism[J]. Nature, 1997, 388(6645): 868-871.
DOI URL |
[195] |
DZIK J. Possible ctenophoran affinities of the precambrian “sea pen” Rangea[J]. Journal of Morphology, 2002, 252(3): 315-334.
DOI URL |
[196] | ZHANG X L, REITNER J. A fresh look at Dickinsonia: Removing it from Vendobionta[J]. Acta Geologica Sinica(English Edition), 2006, 80(5): 636-642. |
[197] |
ZHURAVLEV A Y, WOOD R A, PENNY A M. Ediacaran skeletal metazoan interpreted as a lophophorate[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1818): 20151860.
DOI URL |
[198] |
SEILACHER A. The nature of vendobionts[J]. Geological Society, London, Special Publications, 2007, 286(1): 387-397.
DOI URL |
[199] |
CHEN Z, ZHOU C M, XIAO S H, et al. New Ediacara fossils preserved in marine limestone and their ecological implications[J]. Scientific Reports, 2014, 4(1): 4180.
DOI URL |
[200] | CHEN Z, CHEN X, ZHOU C M, et al. Late Ediacaran trackways produced by bilaterian animals with paired appendages[J]. Science Advances, 2018, 4(6): eaao6691. |
[201] |
EVANS S D, GEHLING J G, DROSER M L. Slime travelers: early evidence of animal mobility and feeding in an organic mat world[J]. Geobiology, 2019, 17(5): 490-509.
DOI URL |
[202] |
IVANTSOV A, NAGOVITSYN A, ZAKREVSKAYA M. Traces of locomotion of Ediacaran macroorganisms[J]. Geosciences, 2019, 9(9): 395.
DOI URL |
[203] |
CHEN Z, ZHOU C, YUAN X L, et al. Death march of a segmented and trilobate bilaterian elucidates early animal evolution[J]. Nature, 2019, 573(7774): 412-415.
DOI URL |
[204] | CONWAY MORRIS S. Ediacaran-like fossils in Cambrian Burgess Shale-Type faunas of North-America[J]. Palaeontology, 1993, 36: 593-635. |
[205] |
HOYAL C J F, HAN J, ÁLVARO J. Cambrian petalonamid Stromatoveris phylogenetically links Ediacaran biota to later animals[J]. Palaeontology, 2018, 61(6): 813-823.
DOI URL |
[206] |
LIU F, SKOVSTED C, TOPPER T, et al. Are hyoliths Palaeozoic lophophorates?[J]. National Science Review, 2020, 7(2): 453-469.
DOI URL |
[207] |
LIU F, SKOVSTED C B, TOPPER T P, et al. Revision of Triplicatella (Orthothecida, Hyolitha) with preserved digestive tracts from the early Cambrian Chengjiang Lagerstätte, South China[J]. Historical Biology. DOI: 202010.1080/08912963.2020.1747059.
DOI |
[208] |
ZHANG Z F, ROBSON S P, EMIG C, et al. Early Cambrian radiation of brachiopods: a perspective from South China[J]. Gondwana Research, 2008, 14(1/2): 241-254.
DOI URL |
[209] | CHEN J Y, ZHOU G Q. Biology of Chengjiang fauna[J]. Bulletin of the National Museum of Natural Science, 1997, 10: 11-106. |
[210] |
ZHAO F C, SMITH M R, YIN Z J, et al. Orthrozanclus elongata n. sp and the significance of sclerite-covered taxa for early trochozoan evolution[J]. Scientific Reports, 2017, 7(1): 16232.
DOI URL |
[211] |
ZHAO F C, SMITH M R, YIN Z J, et al. First report of Wiwaxia from the Cambrian Chengjiang Lagerstätte[J]. Geological Magazine, 2015, 152(2): 378-382.
DOI URL |
[212] |
ZHANG Z F, POPOV L E, HOLMER L E, et al. Earliest ontogeny of early Cambrian acrotretoid brachiopods: first evidence for metamorphosis and its implications[J]. BMC Evolutionary Biology, 2018, 18(1): 42.
DOI URL |
[213] | CHEN J Y, ERDTMANN B D. Lower Cambrian Fossil Lagerstätte from Chengjiang, Yunnan, China: insights for reconstructing early Metazoan life[M]//SIMMONETA A. The early evolution of metazoa and the significance of problematic taxa. Cambridge: Cambridge University Press, 1991: 57-76. |
[214] | CONWAY M S. A new entoproct-like organism from the Burgess Shale of British Columbia[J]. Palaeontology, 1978, 20: 833-845. |
[215] | OU Q, HAN J, ZHANG Z F, et al. Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(33): 8835-8840. |
[216] | RUPPERT E E, FOX R S, BARNES R D. Invertebrate zoology: a functional evolutionary approach[M]. Belmont: Brooks/Cole Publishing, 2004. |
[217] |
O'BRIEN L J, CARON J B. A new stalked filter-feeder from the middle Cambrian Burgess Shale, British Columbia, Canada[J]. PLoS One, 2012, 7(1): e29233.
DOI URL |
[218] |
ZHAO Y, VINTHER J, PARRY L A, et al. Cambrian sessile, suspension feeding stem-group ctenophores and evolution of the comb jelly body plan[J]. Current Biology, 2019, 29(7): 1112-1125.
DOI URL |
[219] |
OU Q, XIAO S H, HAN J, et al. A vanished history of skeletonization in Cambrian comb jellies[J]. Science Advances, 2015, 1(6): e1500092.
DOI URL |
[220] |
SMITH M R. Ontogeny, morphology and taxonomy of the soft-bodied Cambrian ‘Mollusc’ Wiwaxia[J]. Palaeontology, 2014, 57(1): 215-229.
DOI URL |
[221] |
THOMAS R D K, RUNNEGAR B, MATT K, et al. Pelagiella exigua, an early Cambrian stem gastropod with chaetae: lophotrochozoan heritage and conchiferan novelty[J]. Palaeontology, 2020. DOI: 10.1111/pala.12476.
DOI |
[222] |
PARKHAEV P Y. Shell chirality in Cambrian gastropods and sinistral members of the Genus Aldanella Vostokova, 1962[J]. Paleontological Journal, 2007, 41(3): 233-240.
DOI URL |
[223] |
PARKHAEVA P Y, KARLOVA G A. Taxonomic revision and evolution of Cambrian Mollusks of the genus Aldanella Vostokova, 1962 (Gastropoda: Archaeobranchia)[J]. Paleontological Journal, 2011, 45(10): 1145-1205.
DOI URL |
[224] | GUO J F, QIANG Y Q, HAN J, et al. Recent progresses on small shelly fossils from the Cambrian (Terreneuvian) Yanjiahe Formation in the Three Gorges area[J]. Earth Science Frontiers, 2020, 27(6): 14-25(in Chinese with English abstract). |
[225] | BENGTSON S, MATTHEW S C, MISSARZHEVSKY V V. The Cambrian net-like fossil Microdictyon A. H[M]//NITECKI M H. Problematic fossil taxa. New York: Oxford University Press, 1986: 97-115. |
[226] |
DZIK J, KRUMBIEGEL G. The oldest ‘onychophoran’ Xenusion: a link connecting phyla?[J]. Lethaia, 1989, 22(2): 169-181.
DOI URL |
[227] |
RAMSKÖLD L, HOU X G. New early Cambrian animal and onychophoran affinities of enigmatic metazoans[J]. Nature, 1991, 351: 225-228.
DOI URL |
[228] |
HOU X G, MA X Y, ZHAO J, et al. The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China[J]. Lethaia, 2004, 37(3): 235-244.
DOI URL |
[229] |
HOU X G, RAMSKÖLD L, BERGSTRÖM J. Composition and preservation of the Chengjiang Fauna: a Lower Cambrian soft-bodied biota[J]. Zoologica Scripta, 1991, 20(4): 395-411.
DOI URL |
[230] |
LIU J N, HAN J, SIMONETTA A M, et al. New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte[J]. Chinese Science Bulletin, 2006, 51(3): 358-363.
DOI URL |
[231] |
HOWARD R J, HOU X, EDGECOMBE G D, et al. A tube-dwelling early Cambrian lobopodian[J]. Current Biology, 2020, 30(8): 1529-1536.
DOI URL |
[232] |
OU Q, LIU J N, SHU D G, et al. A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstätte, southwestern China, and its phylogenetic implications[J]. Journal of Paleontology, 2015, 85(3): 587-594.
DOI URL |
[233] |
OU Q, SHU D G, MAYER G. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda[J]. Nature Communications, 2012, 3: 1261.
DOI URL |
[234] |
MA X Y, EDGECOMBE G D, LEGG D A, et al. The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis[J]. Journal of Systematic Palaeontology, 2013, 12(4): 445-457.
DOI URL |
[235] | LIU J, HAN J, ZHANG Z, et al. Restudy the relationship between Cambrian lobopods and Onychophora[J]. Journal of Northwest University (Natural Science Edition), 2009, 39(6): 1037-1041(in Chinese with English abstract). |
[236] |
BORNER J, REHM P, SCHILL R O, et al. A transcriptome approach to ecdysozoan phylogeny[J]. Molecular Phylogenetics and Evolution, 2014, 80: 79-87.
DOI URL |
[237] |
MA X Y, CONG P Y, HOU X G, et al. An exceptionally preserved arthropod cardiovascular system from the early Cambrian[J]. Nature Communications, 2014, 5: 3560.
DOI URL |
[238] |
LIU J N, STEINER M, DUNLOP J A, et al. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids[J]. Proceedings of the Royal Society B: Biological Sciences, 2018, 285(1876): 20180051.
DOI URL |
[239] |
CONG P Y, MA X Y, HOU X G, et al. Brain structure resolves the segmental affinity of anomalocaridid appendages[J]. Nature, 2014, 513(7519): 538-542.
DOI URL |
[240] |
TANAKA G, HOU X, MA X, et al. Chelicerate neural ground pattern in a Cambrian great appendage arthropod[J]. Nature, 2013, 502(7471): 364-367.
DOI URL |
[241] |
HOU X G, SIVETER D J, ALDRIDGE R J, et al. Collective behavior in an early Cambrian arthropod[J]. Science, 2008, 322(5899): 224.
DOI URL |
[242] |
VANNIER J, VIDAL M, MARCHANT R, et al. Collective behaviour in 480-million-year-old trilobite arthropods from Morocco[J]. Scientific Reports, 2019, 9(1): 14941.
DOI URL |
[243] |
SHU D G, VANNIER J, LUO H L, et al. Anatomy and lifestyle of Kunmingella (Arthropoda, Bradoriida) from the Chengjiang fossil Lagerstätte (Lower Cambrian; Southwest China)[J]. Lethaia, 1999, 32(4): 279-298.
DOI URL |
[244] |
DUAN Y H, HAN J, FU D J, et al. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 983-990.
DOI URL |
[245] |
FU D J, ORTEGA-HERNANDEZ J, DALEY A C, et al. Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China[J]. BMC Evolutionary Biology, 2018, 18(1): 147.
DOI URL |
[246] |
CARON J B, VANNIER J. Waptia and the diversification of brood care in early arthropods[J]. Current Biology, 2016, 26(1): 69-74.
DOI URL |
[247] | OU Q, VANNIER J, YANG X F, et al. Evolutionary trade-off in reproduction of Cambrian arthropods[J]. Science Advances, 2020, 6(18): eaaz3376. |
[248] |
DZIK J. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion”[J]. Paleobiology, 2005, 31(3): 503-521.
DOI URL |
[249] |
KESIDIS G, SLATER B J, JENSEN S, et al. Caught in the act: priapulid burrowers in early Cambrian substrates[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1894): 20182505.
DOI URL |
[250] |
VANNIER J, CALANDRA I, GAILLARD C, et al. Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary[J]. Geology, 2010, 38(8): 711-714.
DOI URL |
[251] |
SHAO T Q, QIN J C, SHAO Y, et al. New macrobenthic cycloneuralians from the Fortunian (lowermost Cambrian) of South China[J]. Precambrian Research, 2019. DOI: 10.1016/j.precamres.2019.105413: 105413.
DOI |
[252] |
SHAO T Q, WANG Q, LIU Y H, et al. A new scalidophoran animal from the Cambrian Fortunian Stage of South China and its implications for the origin and early evolution of Kinorhyncha[J]. Precambrian Research, 2020. DOI: 10.1016/j.precamres.2020.105616.
DOI |
[253] |
ZHANG H Q, XIAO S H, LIU Y H, et al. Armored kinorhynch-like scalidophoran animals from the early Cambrian[J]. Scientific Reports, 2015, 5: 16521.
DOI URL |
[254] |
WANG D, VANNIER J, SCHUMANN I, et al. Origin of ecdysis: fossil evidence from 535-million-year-old scalidophoran worms[J]. Proceedings of the Royal Society B: Biological Sciences, 2019, 286(1906): 20190791.
DOI URL |
[255] |
WANG D, VANNIER J, YANG X G, et al. Cuticular reticulation replicates epidermal cells pattern in lowermost Cambrian scalidophoran worms[J]. Proceedings of the Royal Society B: Biological Sciences, 2020. DOI: 10.1098/rspb.2020.0470.
DOI |
[256] |
LIU J N, LEROSEY-AUBRIL R, STEINER M, et al. Origin of raptorial feeding in juvenile euarthropods revealed by a Cambrian radiodontan[J]. National Science Review, 2018, 5(6): 863-869.
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||