地学前缘 ›› 2020, Vol. 27 ›› Issue (5): 195-206.DOI: 10.13745/j.esf.sf.2020.5.53

• 表生成因矿物学:地表环境及其修复 • 上一篇    下一篇

地表“矿物膜”半导体矿物光电子调控微生物群落结构演化特性研究

任桂平,鲁安怀,李艳,王长秋,丁竑瑞   

  1. 1. 兰州大学 地质科学与矿产资源学院 甘肃省西部矿产资源重点实验室, 甘肃 兰州 730000
    2. 北京大学 地球与空间科学学院 造山带与地壳演化教育部重点实验室/矿物环境功能北京市重点实验室, 北京 100871
  • 收稿日期:2020-04-25 修回日期:2020-05-20 出版日期:2020-09-25 发布日期:2020-09-25
  • 通讯作者: 鲁安怀(1962—),男,教授,博士生导师,主要从事环境矿物学相关研究;丁竑瑞(1985—),男,助理研究员,主要从事环境矿物学相关研究
  • 作者简介:任桂平(1991—),男,副教授,主要从事环境矿物学、地质微生物相关研究。E-mail:renguiping@pku.edu.cn
  • 基金资助:

    国家重点基础研究发展计划“973”项目(2014CB846001);国家自然科学基金项目(41230103,91851208,41820104003);兰州大学中央高校基本科研业务费专项资金(lzujbky-2020-37)

The evolutionary process of microbial community structure influenced by photoelectron from semiconducting minerals occurring at the “mineral membrane” on the Earth surface

REN Guiping, LU Anhuai, LI Yan, WANG Changqiu, DING Hongrui   

  1. 1. The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
    2. The Key Laboratory of Orogenic Belts and Crustal Evolution/Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • Received:2020-04-25 Revised:2020-05-20 Online:2020-09-25 Published:2020-09-25

摘要:

矿物微生物交互作用广泛参与地球表层系统物质循环与能量流动过程,深刻地影响着一系列重要的地表生物地球化学进程。近年来地表半导体矿物的相关研究,为矿物微生物交互作用提供了崭新研究方向,揭示地表“日光半导体矿物微生物”系统电子传递过程及其环境效应,是地质微生物学交叉领域研究的核心科学问题之一。本研究从地表不同生境“矿物膜”出发,以光电化学技术证实喀斯特、红壤、岩石漆“矿物膜”在1 000 min长时间循环实验中平均光电流值约为5.4、3.4、3.2 μA/cm2,证实“矿物膜”良好日光响应特性且铁锰氧化物矿物在其中发挥核心作用。基于笔者前期研究所发现的“矿物膜”电活性菌富集且与半导体矿物分布呈正相关性这一现象,本文进一步构建模拟光电子红壤细菌群落系统,20天后细菌群落α多样性显著提升,研究证实细菌群落具有模拟光电子响应活性,且电极与溶液群落均具有演化方向性;16S rRNA测序分析表明模拟光电子作用下Shewanella、Pseudomonas、Streptococcus、Lactobacillus、Acinetobacter等电活性菌显著富集。综上,本文研究结果间接证实地表半导体矿物光电子可有效调控微生物群落结构并促进电活性菌在“矿物膜”中富集。

null

关键词: 地表&ldquo, 矿物膜&rdquo, ;半导体矿物;光电子;电活性菌

Abstract:

 The interaction between minerals and microorganisms involved in the material recycling and energy transformation takes place on the earth's surface. In recently years, research on semiconducting minerals in natural environments has provided a new direction for the study of mineral-microbe interaction. It is one of the core scientific issues in the interdisciplinary study of geomicrobiology to reveal the electron transfer mechanism and its environmental effects on the “sunlight-semiconducting minerals-microorganisms” system. In this study, through examination of natural “mineral membrane” samples, we confirmed that the average photocurrents for karst, red soil and rock varnish samples were about 5.4, 3.4 and 3.2 μA/cm2, respectively, in the 1000 min long-term cycling experiments. The results demonstrated that the “mineral membrane” samples have good solar response characteristic, and iron/manganese oxide minerals play a key role in the response process. Moreover, based on our previous studies where we showed that the electroactive genera were enriched in “mineral membrane” and correlated positively with semiconducting mineral distribution, we successfully constructed a simulated photoelectron influencing bacterial community system in red soil. Twenty days later, the α diversity of bacterial community was significantly increased, and the bacterial community had an active response for simulating photoelectron. In addition, bacterial community presented directional evolutions at the electrode and in solution samples. The 16S rRNA sequencing analysis showed that Shewanella, Pseudomonas, Streptococcus, Lactobacillus, Acinetobacter and other electroactive genera were significantly enriched under the influence of simulated photoelectron. In conclusion, the results indirectly confirmed that photoelectron from semiconducting minerals in surface environments could regulate the structure of microbial community and promote enrichment of electroactive genera in the “mineral membrane” over time.

Key words: mineral membrane&rdquo, on the earth surface, semiconducting minerals, photoelectron, electroactive genera

中图分类号: