地学前缘 ›› 2022, Vol. 29 ›› Issue (6): 10-23.DOI: 10.13745/j.esf.sf.2022.8.12
杨树锋1,5(), 贾承造2,5, 陈汉林1,5,*(
), 贾东3,5, 魏国齐2,5, 肖安成1,5, 郭召杰4,5, 程晓敢1,5, 吴磊1,5, 尹宏伟3,5, 章凤奇1,5, 林秀斌1,5
收稿日期:
2022-07-25
修回日期:
2022-08-10
出版日期:
2022-11-25
发布日期:
2022-10-20
通信作者:
陈汉林
作者简介:
杨树锋(1947—),男,博士,中国科学院院士,主要从事造山带与盆地构造研究。E-mail: yjsy-ysf@zju.edu.cn
基金资助:
YANG Shufeng1,5(), JIA Chengzao2,5, CHEN Hanlin1,5,*(
), JIA Dong3,5, WEI Guoqi2,5, XIAO Ancheng1,5, GUO Zhaojie4,5, CHENG Xiaogan1,5, WU Lei1,5, YIN Hongwei3,5, ZHANG Fengqi1,5, LIN Xiubin1,5
Received:
2022-07-25
Revised:
2022-08-10
Online:
2022-11-25
Published:
2022-10-20
Contact:
CHEN Hanlin
摘要:
系统分析前人在沉积盆地构造研究的基础上,论文总结了沉积盆地构造核心理论和关键技术方法的前沿与发展方向。沉积盆地构造核心理论包括盆地分类理论、成盆机制理论、变形定量分析理论和盆地充填过程理论。盆地分类理论是依据不同分类标准建立盆地分类方案,其发展趋势是基于资源与构造背景的原型盆地分类和基于盆地演化的叠合盆地分类;成盆机制理论是定量模拟不同作用机制下(纯热机制、构造作用、负载作用)盆地沉降过程及其控制因素,其发展趋势是三维成盆动力学模拟;变形定量分析理论包括断层相关褶皱理论、临界楔理论和盐构造理论,其发展趋势是三维构造建模与三维定量变形分析;盆地充填过程理论主要开展不同构造成因盆地的充填过程对比与盆山过程的源-汇分析,其发展趋势是多元源-汇分析与定量化盆地分析。沉积盆地构造关键前沿技术包括三维构造建模技术、构造物理模拟与数值模拟技术和基于三维构造恢复的裂缝预测技术。构造物理模拟技术包括了基于工业CT扫描成像物理模拟技术:可以无损动态监测构造带内部变形演化过程,精确构建变形带三维空间展布形态;基于PIV的有限应变分析的物理模拟技术:可以定量分析变形的演化过程,直观展示应变分布特征,探讨构造应变动态分布规律;基于超重力离心机的构造物理模拟技术:可以模拟不同尺度构造流变过程,探讨岩石圈浅层脆性变形与深层韧性流变之间的动力学机制。
中图分类号:
杨树锋, 贾承造, 陈汉林, 贾东, 魏国齐, 肖安成, 郭召杰, 程晓敢, 吴磊, 尹宏伟, 章凤奇, 林秀斌. 沉积盆地构造核心理论和关键技术方法:前沿与发展方向[J]. 地学前缘, 2022, 29(6): 10-23.
YANG Shufeng, JIA Chengzao, CHEN Hanlin, JIA Dong, WEI Guoqi, XIAO Ancheng, GUO Zhaojie, CHENG Xiaogan, WU Lei, YIN Hongwei, ZHANG Fengqi, LIN Xiubin. Core theories of sedimentary basin structure and the related key research techniques: Frontiers and development directions[J]. Earth Science Frontiers, 2022, 29(6): 10-23.
图3 陆内裂谷盆地典型层序柱状图(据文献[63]) (a)和(b)是理论层序,由反-正粒序旋回组成;(c)是巴西Espinhaço盆地的新元古界裂谷层序,由多个反-正粒序旋回组成,其中每个旋回上部向上变细的正粒序代表每次构造事件减弱或停止的时间。
Fig.3 Histogram of typical sequence in intracontinental rift basins. Adapted from [63].
图4 前陆盆地岩石圈侧向迁移时产生的沉降带垂向叠置而形成的层序(据文献[64])
Fig.4 Sequence formed by the vertical superposition of subsidence zones produced during the lateral migration of the lithosphere in the foreland basin. Adapted from [64].
[1] | DICKINSON W R. Plate tectonic evolution of sedimentary basins[R]. Tulsa: American Association of Petroleum Geologists Continuing Education Course Notes Series, 1976, 1: 1-62. |
[2] | BALLY A, SNELSON S. Realms of subsidence[M]//MIALL A. Facts and principles of world petroleum occurrence. Calgary: Canadian Society of Petroleum Geologists, 1980, Memoir 6: 9-94. |
[3] |
李德生. 中国含油气盆地构造类型[J]. 石油学报, 1982, 3: 1-12.
DOI |
[4] | 朱夏. 含油气盆地研究方向的探讨[J]. 石油与实验地质, 1983, 5(2): 117-123. |
[5] | KINGSTON D R, DISHROON C P, WILLIAMS P A. Global basin classification[J]. AAPG Bulletin, 1983, 67: 2175-2193. |
[6] |
INGERSOLL R V. Tectonics of sedimentary basins[J]. Geological Society of America Bulletin, 1988, 100: 1704-1719.
DOI URL |
[7] | INGERSOLL R V. Tectonics of sedimentary basins, with revised nomenclature[M]//BUSBY C, AZOR A. Tectonics of sedimentary basins: recent advances. Oxford, UK: Wiley-BlackWell, 2012: 3-46. |
[8] | 杨树锋, 陈汉林, 肖安成, 等. 全球大地构造演化与盆地发育规律研究[C]. 杭州: 中国石油重大科技专项研究报告, 2011. |
[9] | BUSBY C, INGERSOLL R V. Tectonics of sedimentary basins[M]. Cambridge: Massachu-setts. Blackwell Science, 1995: 579. |
[10] | ALLEN P A, ALLEN J R. Basin analysis: principles and application to petroleum play assessment[M]. 3rd ed. Oxford, UK: Wiley-BlackWell, 2013. |
[11] |
MCKENZIE D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40: 25-32.
DOI URL |
[12] |
WERNICKE B, BURCHFIEL B C. Modes of extensional tectonics[J]. Journal of Structural Geology, 1982, 4(2): 105-115.
DOI URL |
[13] |
LISTER G S, DAVIS G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A[J]. Journal of Structural Geology, 1989, 11(1/2): 65-94.
DOI URL |
[14] | RICH J L. Mechanics of low-angle overthrust faulting as illustrated by Cumberland Thrust Block, Virginia, Kentucky, and Tennessee[J]. AAPG Bulletin, 1934, 18(12): 1584-1596. |
[15] |
SUPPE J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983, 283: 684-721.
DOI URL |
[16] | SUPPE J, MEDWEDEFF D. Geometry and kinematics of fault propagation folding[J]. Eclogae Geologicae Helvetiae, 1990, 83: 409-454. |
[17] | XIAO H B, SUPPE J. origin of rollover[J]. AAPG Bulletin, 1992, 76(4): 509-529. |
[18] |
NARR W, SUPPE J. Kinematics of basement-involved compressive structures[J]. American Journal of Science, 1994, 294(7): 802-860.
DOI URL |
[19] |
SHAW J, SUPPE J. Active faulting and growth folding in the eastern Santa Barba Channel, California[J]. GSA Bulletin, 1994, 106: 607-626.
DOI URL |
[20] | SHAW J, HOOK S C, SUPPE J. Structural trend analysis by axial surface mapping[J]. AAPG Bulletin, 1994, 78(5): 700-721. |
[21] |
MEDWEDEFF D A, SUPPE J. Multibend fault-bend folding[J]. Journal of Structural Geology, 1997, 19(3/4): 279-292.
DOI URL |
[22] | SUPPE J, CONNORS C D, ZHANG Y K. Shear fault-bend folding[M]//MCCLAY K R. Thrust tectonics and hydrocarbon systems. AAPG Memoir, 2004. |
[23] |
ERSLEV E A. Tri-shear fault-propagation folding[J]. Geology, 1991, 19(6): 617-620.
DOI URL |
[24] |
HARDY S, POBLET J. Geometric and numerical-model of progressive limb rotation in detachment folds[J]. Geology, 1994, 22(4): 371-374.
DOI URL |
[25] |
HARDY S, FORD M. Numerical modeling of trishear fault propagation folding[J]. Tectonics, 1997, 16(5): 841-854.
DOI URL |
[26] |
ALLMENDINGER R W. Inverse and forward numerical modeling of trishear fault-propagation folds[J]. Tectonics, 1998, 17(4): 640-656.
DOI URL |
[27] | WANG Y R, OSKIN M E, ZHANG H P, et al. Deducing crustal-scale reverse-fault geometry and slip distribution from folded river terraces, Qilian Shan, China[J]. Tectonics, 2020, 39(1), e2019TC005901. |
[28] |
DAVIS D, SUPPE J, DAHLEN F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88(B2): 1153-1172.
DOI URL |
[29] | DAHLEN F A, SUPPE J, DAVIS D. Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B12): 10087-10101. |
[30] |
DAHLEN F A. Mechanical energy budget of a fold-and-thrust belt[J]. Nature, 1988, 331(6154): 335-337.
DOI URL |
[31] |
DAHLEN F A. Critical taper model of fold-and-thrust belts and accretionary wedges[J]. Annual Review of Earth and Planetary Sciences, 1990, 18: 55-99.
DOI URL |
[32] |
DCELLES P G, GILES K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123.
DOI URL |
[33] |
SUPPE J. Absolute fault and crustal strength from wedge tapers[J]. Geology, 2007, 35(12): 1127.
DOI URL |
[34] |
DAVISON I. Faulting and fluid flow through salt[J]. Journal of the Geological Society, 2009, 166: 205-216.
DOI URL |
[35] | HUDEC M R, JACKSON M P, SCHULTZ-ELA D D. The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins[J]. GSA Bulletin, 2009, 121(1/2): 201-221. |
[36] |
URAL J L, SPIERS C J, ZWART H J. Weakening of rock salt by water during long-term creep[J]. Nature, 1986. 324(6097): 554-557.
DOI URL |
[37] |
WEIJERMARS R, JACKSON M P A, VENDEVILLE B. Rheological and tectonic modeling of salt provinces[J]. Tectonophysics, 1993, 217(1/2): 143-174.
DOI URL |
[38] | 戈红星, JACKSON M P A. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报(自然科学版), 1996, 32(4): 640-649. |
[39] |
JACKSON M P A, VENDEVILLE B C. Regional extension as a geologic trigger for diapirism[J]. GSA Bulletin, 1994, 106(1): 57-73.
DOI URL |
[40] |
VENDEVILLE B C, JACKSON M PA. The rise of diapirs during thin-skinned extension[J]. Marine and Petroleum Geology, 1992, 9(4): 331-353.
DOI URL |
[41] |
VENDEVILLE B C, JACKSON M P A. The fall of diapirs during thin-skinned extension[J]. Marine and Petroleum Geology, 1992, 9(8): 354-371.
DOI URL |
[42] | JACKSON M P A. Retrospective salt tectonics[J]. AAPG Memoir 65, 1995: 1-28. |
[43] |
VENDEVILLE B C. Salt tectonics driven by sediment progradation: Part I - Mechanics and kinematics[J]. AAPG Bulletin, 2005, 89(8): 1071-11079.
DOI URL |
[44] |
PICHOT T, NALPAS T. Influence of synkinematic sedimentation in a thrust system with two decollement levels: analogue modelling[J]. Tectonophysics, 2009, 473(3/4): 466-475.
DOI URL |
[45] |
DUERTO L, MCCLAY K. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds[J]. Marine and Petroleum Geology, 2009, 26(7): 1051-1069.
DOI URL |
[46] |
COTTON J T, KOYI H A. Modeling of thrust fronts above ductile and frictional detachments: application to structures in the Salt Range and Potwar Plateau, Pakistan[J]. GSA Bulletin, 2000, 112(3): 351-363.
DOI URL |
[47] |
BAHROUDI A, KOYI H A. Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach[J]. Journal of the Geological Society, 2003, 160: 719-733.
DOI URL |
[48] |
SANS M, VERGES J, GOMIS E, et al. Layer parallel shortening in salt-detached folds: constraint on cross-section restoration[J]. Tectonophysics, 2003, 372(1/2): 85-104.
DOI URL |
[49] | 汤良杰, 余一欣, 陈书平, 等. 含油气盆地盐构造研究进展[J]. 地学前缘, 2005, 12(4): 375-383. |
[50] | CALLOT J P, JAHANI S, LETOUZEY J. The role of pre-existing diapirs in fold and thrust belt development[M]. Frontiers in Earth Sciences, 2007: 309. |
[51] |
CALLOT J P, RIBES C, KERGARAVAT C, et al. Salt tectonics in the Sivas basin (Turkey): crossing salt walls and minibasins[J]. Bulletin De La Societe Geologique De France, 2014, 185(1): 33-42.
DOI URL |
[52] | WU Z Y, YIN H W, WANG X, et al. Characteristics and deformation mechanism of salt-related structures in the western Kuqa depression, Tarim basin: insights from scaled sandbox modeling[J]. Tectonophysics, 2014, 612: 81-96. |
[53] | 戈红星, VENDEVILLE B C, JACKSON M P A. 前陆褶皱冲断带厚皮缩短盐构造运动的物理模拟[J]. 高校地质学报, 2004, 10(1): 39-49. |
[54] | 尹宏伟, 王哲, 汪新, 等. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论[J]. 高校地质学报, 2011, 17(2): 308-317. |
[55] |
COBBOLD P R, SZATMARI P. Radial gravitational gliding on passive margins[J]. Tectonophysics, 188(3/4): 249-259.
DOI URL |
[56] |
ROWAN M G, VENDEVILLE B C. Fold belts with early salt withdrawal and diapirism: physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia[J]. Marine and Petroleum Geology, 2006, 23 (9/10): 871-891.
DOI URL |
[57] |
DOOLEY T P, JACKSON M P A, HUDEC M R. Initiation and growth of salt-based thrust belts on passive margins: results from physical models[J]. Basin Research, 2007, 19 (1): 165-177.
DOI URL |
[58] |
JACKSON M P A, HUDEC M R, JENNETTE D C, et al. Evolution of the Cretaceous Astrid thrust belt in the ultradeep-water Lower Congo Basin, Gabon[J]. AAPG Bulletin, 2008, 92 (4): 487-511.
DOI URL |
[59] |
BRUN, J P, FORT X, Salt tectonics at passive margins: geology versus models[J]. Marine and Petroleum Geology, 2011, 28(6): 1123-1145.
DOI URL |
[60] |
KOYI H, PETERSEN K. Influence of basement faults on the development salt structures in the Danish Basin[J]. Marine and Petroleum Geology, 1993, 10 (2): 82-94.
DOI URL |
[61] |
KOYI H, JENYON M K, Petersen K. Influence of basement faults on diapirism[J]. Journal of Petroleum Geology, 1993, 16(3): 285-311.
DOI URL |
[62] | WITHJACK M O, GALLAY S. Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequence[J]. AAPG Bulletin, 2000, 84(5): 627-651. |
[63] |
MARTINS-NETO M A, CATUNEANU O. Rift sequence stratigraphy[J]. Marine and Petroleum Geology, 2010, 27(1): 247-253.
DOI URL |
[64] | DECELLES P G. Foreland basin systems revisited: variations in response to tectonic settings[M]//BUSBY C, AZOR A. Tectonics of sedimentary basins: recent advances. Oxford, UK: Wiley-BlackWell, 2012: 405-426. |
[65] | 贾东, 李一泉, 王毛毛, 等. 断层相关褶皱的三维构造几何学分析: 以川西三维地震工区为例[J]. 岩石学报, 2011, 27(3): 732-740. |
[66] | LEAHY G, SKORSTAD A. Uncertainty in subsurface interpretation: a new workflow[J]. First Break, 2013, 31(9): 87-93. |
[67] |
毛凤军, 姜虹, 欧亚菲, 等. 尼日尔Termit盆地三维地质构造建模研究与应用[J]. 地学前缘, 2018, 25(2): 62-71.
DOI |
[68] | 李兆亮, 潘懋, 韩大匡, 等. 三维构造建模技术[J]. 地球科学, 2016, 41(12): 2136-2146. |
[69] |
管树巍, 何登发. 复杂构造建模的理论与技术架构[J]. 石油学报, 2011, 32(6): 991-1000.
DOI |
[70] |
MORETTI I. Working in complex areas: new restoration workflow based on quality control, 2D and 3D restorations[J]. Marine and Petroleum Geology, 2008, 25(3): 205-218.
DOI URL |
[71] | 管树巍, PLESCH A, 李本亮, 等. 基于地层力学结构的三维构造恢复及其地质意义[J]. 地学前缘, 2010, 4: 130-150. |
[72] | DURAND R P, SHAW J, PLESCH A, et al. Enabling 3D geomechanical restoration of strike- and oblique-slip faults using geological constraints, with applications to the deep-water Niger Delta[J]. Journal of Structural Geology, 2013: 33-44. |
[73] | 钟嘉猷. 实验构造地质学及其应用[M]. 北京: 科学出版社, 1998. |
[74] |
KOYI H. Analogue modelling: from a qualitative to a quantitative technique: a historical outline[J]. Journal of Petroleum Geology, 1997, 20 (2): 223-238.
DOI URL |
[75] | WARREN J K. Evaporites: sediments, resources and hydrocarbons[M]. Berlin Heidelberg: Springer, 2006. |
[76] | 吴珍云. 含盐沉积盆地盐构造分析和物理模拟[D]. 南京: 南京大学, 2014. |
[77] |
KUKOWSKI N, LALLEMAND S E, MALAVIEILLE J. Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Western Mediterranean Ridge accretionary complex[J]. Marine Geology, 2002, 186 (1/2): 29-42.
DOI URL |
[78] |
MCCLAY K R, WHITEHOUSE P S, DOOLEY T. 3D evolution of fold and thrust belts formed by oblique convergence[J]. Marine and Petroleum Geology, 2004, 21(7): 857-877.
DOI URL |
[79] |
SCHREURS G, BUITER S J H, BOUTELIER J, et al. Benchmarking analogue models of brittle thrust wedges[J]. Journal of Structural Geology, 2016, 92: 116-139.
DOI URL |
[80] |
SCHELLART W P, STRAK V. A review of analogue modelling of geodynamic processes: approaches, scaling, materials and quantification, with an application to subduction experiments[J]. Journal of Geodynamics, 2016, 100: 7-32.
DOI URL |
[81] |
GRAY G G, MORGAN J K, SANZ P F. Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures[J]. Journal of Structural Geology, 2014, 59: 19-36.
DOI URL |
[82] |
IWASHITA K, ODA M. Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technology, 2000, 109(1): 192-205.
DOI URL |
[83] |
MORGAN J K, BANGS N L. Recognizing seamount-forearc collisions at accretionary margins: insights from discrete numerical simulations[J]. Geology, 2017, 45 (7): 635-638.
DOI URL |
[84] |
POLLARD D D, AYDIN A. Progress in understanding joints over the last century[J]. GSA Bulletin, 1998, 100(8): 1181-1204.
DOI URL |
[85] |
GALE J F W, LAUBACH S E, OLSON J E, et al. Natural fractures in shale: a review and new observations[J]. AAPG Bulletin, 2014, 98(11): 2165-2216.
DOI URL |
[86] | LORENZ J C, COOPER S P. Applied concepts in fractured reservoirs[M]. Oxford, UK: Wiley-Blackwell, 2020. |
[87] | AGUILERA R. Natural fractured reservoir[M]. Tulsa, Oklahoma: Penewell Publishing Company, 1995. |
[88] | 顾雯. 地震多属性裂缝检测方法技术研究[D]. 成都: 成都理工大学, 2012. |
[89] | KUFRASA M, SŁONKA L, KRZYWIEC P, et al. Fracture pattern of the lower Paleozoic sedimentary cover in the Lublin basin of southeastern Poland derived from seismic attribute analysis and structural restoration[J]. Interpretation, 2018, 6(3): 73-89. |
[90] | COX T, SEITZ K. Ant Tracking seismic volumes for automated fault interpretation[P]. Calgary: Canadian Society of Petroleum Geologist, 2007. |
[91] | LEFRANC M, HUSSEIN A M, TAN C P. 3D structural restoration and geomechanical forward modeling in a visco-plastic medium to natural fracture prediction in a Malay producing field, offshore Malaysia[P]. Houston: Proceedings of the Annual Offshore Technology Conference, 2014. |
[92] | SANDERS C, BONORA M, RICHARDS D. Kinematic structural restorations and discrete fracture modeling of a thrust trap: a case study from the Tarija basin, Argentina[J]. Marine & Petroleum Geology, 2004, 21(7): 845-855. |
[93] | KUMAR S, SAHOO M, CHAKRABARTI S K. Geomechanical restoration based fracture modelling of Mumbai high unconventional basement reservoir[J]. Geohorizons, 2017: 33-36. |
[1] | 何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59. |
[2] | 毛凤军,姜虹,欧亚菲,程小岛,袁圣强,王玉华,郑凤云,李早红. 尼日尔Termit盆地三维地质构造建模研究与应用[J]. 地学前缘, 2018, 25(2): 62-71. |
[3] | 徐曦,高顺莉. 下扬子区新生代断陷盆地的构造与形成[J]. 地学前缘, 2015, 22(6): 148-166. |
[4] | 唐勇, 王刚, 郑孟林, 陈磊, 冯莉, 孔玉华, 卫延召, 赖世新. 新疆北部石炭纪盆地构造演化与油气成藏[J]. 地学前缘, 2015, 22(3): 241-253. |
[5] | 李思田. 沉积盆地动力学研究的进展、发展趋向与面临的挑战[J]. 地学前缘, 2015, 22(1): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||