地学前缘 ›› 2021, Vol. 28 ›› Issue (2): 211-231.DOI: 10.13745/j.esf.sf.2020.9.8
刘静1,2(), 袁兆德2, 徐岳仁3, 邵延秀4, 王鹏2, 徐晶5, 林舟6, 韩龙飞1
收稿日期:
2020-04-05
修回日期:
2020-06-01
出版日期:
2021-03-25
发布日期:
2021-04-03
作者简介:
刘 静(1969—),女,教授,博士生导师,主要从事活动构造、地震地质和古地震领域研究工作。E-mail: earofwood@yahoo.com, liu_zeng@tju.edu.cn
基金资助:
LIU Jing1,2(), YUAN Zhaode2, XU Yueren3, SHAO Yanxiu4, WANG Peng2, XU Jing5, LIN Zhou6, HAN Longfei1
Received:
2020-04-05
Revised:
2020-06-01
Online:
2021-03-25
Published:
2021-04-03
摘要:
古地震学是活动构造学、地震地质学和构造地貌学相结合的一个分支学科,它以野外工作为基础,以史前地震的发生位置、时间及震级为研究目标,其核心是古地震事件变形的地层和地貌证据。古地震学通过运用沉积地层学、地貌学和构造地质学等研究中常用的方法和手段来识别第四纪沉积中保存的史前强震的证据并对其进行准确年代测定,弥补了历史地震和仪器记录短而大地震原地复发间隔长的局限,获得活动断裂上多次强震的时空重复特征,为评估未来地震发生概率提供基础数据。本文对古地震学的历史、研究前沿和发展趋势进行综述。首先介绍了古地震学的定义、世界和中国古地震研究的发展历史和古地震研究中的基本研究方法,重点对古地震研究的最新进展和前沿领域,如古地震探槽方法的更新、古地震事件识别证据的分级和不确定性量化评估、古地震数据对地震复发间隔和同震位移的重复规律等理论认识的贡献以及基于震害效应的古地震研究等方面的重要研究成果进行了回顾,最后对古地震研究的未来发展趋势进行了展望,认为未来古地震研究中应加强地震事件识别证据的不确定性量化方法应用,在新的测年方法上开展探索,尝试和完善虚拟现实场景下的古地震研究。在中国,尤其像华北这样历史地震文献资料较为丰富的地区,历史地震震害记录与古地震探槽开挖的结合可以拓展震例研究的丰富程度,拓宽研究思路和方法,促进对难点地区活动断裂的古地震和区域地震危险性评价工作。
中图分类号:
刘静, 袁兆德, 徐岳仁, 邵延秀, 王鹏, 徐晶, 林舟, 韩龙飞. 古地震学:活动断裂强震复发规律的研究[J]. 地学前缘, 2021, 28(2): 211-231.
LIU Jing, YUAN Zhaode, XU Yueren, SHAO Yanxiu, WANG Peng, XU Jing, LIN Zhou, HAN Longfei. Paleoseismic investigation of the recurrence behavior of large earthquakes on active faults[J]. Earth Science Frontiers, 2021, 28(2): 211-231.
图3 走滑断裂古地震识别标志(据文献[68]) a—正断陡坎崩塌形成崩积楔;b—挤压阶区内形成鼓包和小型正花状构造;c—断层尖灭与上端地层挠曲;d—褶皱往往会引起上覆地层的增厚和角度不整合,有时也会伴有次生断裂;e—砂土液化引起的喷砂顺断裂上涌,在地表形成砂锥;f—挤压鼓包和背斜上,近地表含水地层砂土液化形成的刨蚀坑。
Fig.3 Paleoseismic identification marks of strike-slip faults. Adapted from [68].
图4 海原断裂甘盐池拉分盆地(据文献[42]) 盆地周缘不同岩性的冲洪积物汇聚到盆地内部,形成丰富的高分辨率韵律性沉积地层。
Fig.4 The internally draining Salt Lake pull-apart basin on the Haiyuan fault. Adapted from [42].
等级 | 具体标准 |
---|---|
0 | 地层分辨率较低造成断层上断点具体位置无法判别。 |
1 | 断层产生微小位错。上覆地层厚度变化轻微,可能反映了简单的自然沉积厚度变化,而不是地震产生的负地形引起的厚度变化。 |
2 | 断层产生中等位错。褶皱幅度小,褶皱层位上覆地层厚度变化适中。 |
3 | 上断点位置清晰,断层位错中等。褶皱作用以及褶皱层位上覆地层厚度变化明显,但是褶皱层位之下缺少明确的致因断层或褶皱层位难以准确限定。 |
4 | 上断点上覆崩积楔或其他地层厚度变化。褶皱作用明显,且褶皱层位上覆地层厚度划分很大,而且与断层的错动有关。 |
5 | 裂缝充填,且充填沉积物是事件层位之后沉积的。能够指示单次沉积事件快速沉积而形成的生长地层,且褶皱和生长地层有致因断层。 |
表1 古地震事件证据等级划分标准(据文献[65])
Table 1 Criteria for grading evidence of palaeoseismic events. Adapted from [65].
等级 | 具体标准 |
---|---|
0 | 地层分辨率较低造成断层上断点具体位置无法判别。 |
1 | 断层产生微小位错。上覆地层厚度变化轻微,可能反映了简单的自然沉积厚度变化,而不是地震产生的负地形引起的厚度变化。 |
2 | 断层产生中等位错。褶皱幅度小,褶皱层位上覆地层厚度变化适中。 |
3 | 上断点位置清晰,断层位错中等。褶皱作用以及褶皱层位上覆地层厚度变化明显,但是褶皱层位之下缺少明确的致因断层或褶皱层位难以准确限定。 |
4 | 上断点上覆崩积楔或其他地层厚度变化。褶皱作用明显,且褶皱层位上覆地层厚度划分很大,而且与断层的错动有关。 |
5 | 裂缝充填,且充填沉积物是事件层位之后沉积的。能够指示单次沉积事件快速沉积而形成的生长地层,且褶皱和生长地层有致因断层。 |
图6 圣安德烈斯断裂弗雷泽山探槽点证据等级分析图(据文献[65]) FM1、FM2、FM3、FM4、FM5、FM7和FM9等事件都具有等级4及以上的识别证据;FM6、FM8和FM11等事件缺少4以上的等级证据,但具有较高等级3的证据,且也有一定数量的较低等级证据;FM10仅有一个等级为3的证据。
Fig.6 Combined plot of event indicator quality and number at the Frazier Mountain site along the San Andreas Fault. Adapted from [65].
[1] | WALLACE R E C. Active tectonics: studies in geophysics[M]. Washington DC: National Academics Press, 1986: 266. |
[2] | SCHWARTZ D P, COPPERSMITH K J. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones[J]. Journal of Geophysical Research: Solid Earth, 1984,89(B7):5681-5698. |
[3] | MCCALPIN J. Paleoseismology[M]. Oxford: Elsevier, 2009. |
[4] | RICHTER C F. Elementaryseismology[M]. San Francisco: W. H. Freeman, 1958: 768. |
[5] | MCKAY A. On the geology of the eastern part of Marlborough provincial district[J]. New Zealand Geological Survey, Report, 1885,17:27-136. |
[6] |
KOTO B. Neo-tectonics; on the causes of the great earthquakes in central Japan, 1891[J]. Terra Nova, 1990,2(3):301-305
DOI URL |
[7] | OLDHAM R D. Report on the great earthquake of 12th June 1897[R]. Calcutta: Geological Survey of India, 1899. |
[8] | LAWSON A C. The California earthquake of April 18, 1906[M]. Washington DC: Carnegie Institute, 1908. |
[9] | GILBERT G K. Lake Bonneville[R]. Washington DC: United States Geological Survey, 1890. |
[10] | OTUKA Y. Post-Pliocene crustal movements in the Outer Zone of southwestern Japan and in the Fossa Magna[J]. Bulletin of Earthquake Research Institute, Tokyo Imperial University, 1932,10:701-722. |
[11] | SUGIMURA A, NARUSE Y. Changes in sea-level, seismic upheavals and coastal terraces in southern Kanto region, Japan[J]. Japan. Journal Geology and Geophysics, 1954,24:101-113. |
[12] | FLORENSOV N A, SOLONENKO V P. The Gobi-Altai earthquake[M]. Washington DC: US Department of Commerce, 1965. |
[13] | ENGELDER J T. Microscopic wear grooves on slickensides: Indicators of paleoseismicity[J]. Journal of Geophysical Research: Solid Earth, 1974,79(29):4387-4392. |
[14] |
LENSEN G J. Analysis of progressive fault displacement during down cutting at the Branch River terraces, South Island, New Zealand[J]. Geological Society of America Bulletin, 1968,79:545-556.
DOI URL |
[15] | SLEMMONS D B. State-of-the-art for assessing earthquake hazards in the United States[R]. Vicksburg: US Army Corps of Engineers, Waterways Experiment Station, 1982. |
[16] | BONILLA M G, MARK R K, LIENKAEMPER J J. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement[J]. Bulletin of the Seismological Society of America, 1984,74(6):2379-2411. |
[17] |
WALLACE R E. Earthquake recurrence intervals on the San Andreas fault[J]. Geological Society of America Bulletin, 1970,81(10):2875-2890.
DOI URL |
[18] | CLARK M M, GRANTZ A, RUBIN M. Holocene activity of the Coyote Creek fault as recorded in sediments of Lake Cahuilla[R]. Denver: United States Geological Survey, 1972. |
[19] | HEATH E G, LEIGHTON F B. Subsurface investigation of ground rupturing during San Fernando earthquake, California earthquake of 9 February 1971[M]. San Fernando: US Department of Commerce, 1973. |
[20] | SIEH K E. Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California[J]. Journal of Geophysical Research: Solid Earth, 1978,83(B8):3907-3939. |
[21] | SIEH K E. Slip along the San Andreas fault associated with the great 1857 earthquake[J]. Bulletin of the Seismological Society of America, 1978,68(5):1421-1448. |
[22] | ZACHARIASEN J, SIEH K, TAYLOR F W, et al. Submergence and uplift associated with the giant 1833 Sumatran subduction earthquake: evidence from coral microatolls[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B1):895-919. |
[23] |
SIEH K, NATAWIDJAJA D H, MELTZNER A J, et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra[J]. Science, 2008,322(5908):1674-1678.
DOI URL |
[24] |
ROCKWELL T K, DAWSON T E, YOUNG BEN-HORIN J, et al. A 21-event, 4000-year history of surface ruptures in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major plate boundary fault[J]. Pure and Applied Geophysics, 2015,172(5):1143-1165.
DOI URL |
[25] | WELDON R, SCHARER K, FUMAL T, et al. Wrightwood and the earthquake cycle: what a long recurrence record tells us about how faults work[J]. GSA Today, 2004,14(9):4-10. |
[26] |
BERRYMAN K R, COCHRAN U A, CLARK K J, et al. Major earthquakes occur regularly on an isolated plate boundary fault[J]. Science, 2012,336(6089):1690-1693.
DOI URL |
[27] |
YUAN Z, LIU-ZENG J, WANG W, et al. A 6000-year-long paleoseismologic record of earthquakes along the Xorkoli section of the Altyn Tagh fault, China[J]. Earth and Planetary Science Letters, 2018,497:193-203.
DOI URL |
[28] |
SCHARER K M, BIASI G P, WELDON R J. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California[J]. Journal of Geophysical Research, 2011,116(B12):B12111.
DOI URL |
[29] | 郭增建, 谢原定, 李孟銮, 等. 1920年12月16日的海原大地震[J]. 地球物理学报, 1976,19(1):42-49. |
[30] | 中国地震历史资料编辑委员会总编室. 中国地震历史资料汇编[M]. 北京: 科学出版社, 1985. |
[31] | 中国地震学会地震地质专业委员会. 中国活动断裂[M]. 北京: 地震出版社, 1982. |
[32] | 中国第四纪研究委员会全新世分会, 陕西省地震局. 史前地震与第四纪地质文集[M]. 西安: 陕西科学技术出版社, 1982. |
[33] | 刘百篪, 周俊喜. 海原活断层上的史前大地震[J]. 地震地质, 1985,7(4):11-21, 89. |
[34] | 任金卫, 李玶. 则木河断裂带北段地震地貌及古地震研究[J]. 地震地质, 1989,11(1):27-34, 139. |
[35] | 邓起东, 汪一鹏, 廖玉华, 等. 断层崖崩积楔及贺兰山山前断裂全新世活动历史[J]. 科学通报, 1984,29(9):557-560. |
[36] | 王挺梅, 李建平. 唐山大地震的重复间隔[J]. 地震地质, 1984,6(3):77-83, 87. |
[37] | 冉勇康, 尤惠川, 王景钵, 等. 云南大理苍山东麓晚第四纪地震断层及古地震年代[J]. 地震地质, 1988,10(2):74. |
[38] | 李天袑, 杜其方. 鲜水河断裂带炉霍段的水平运动及地震的重复性研究[J]. 地震地质, 1989,11(4):31-42,. |
[39] | 冉勇康, 邓起东. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 1999,44(1):3-5. |
[40] | 冉勇康, 段瑞涛, 邓起东, 等. 海原断裂高湾子地点三维探槽的开挖与古地震研究[J]. 地震地质, 1997,19(2):97-107. |
[41] | 刘静, 徐锡伟, 李岩峰, 等. 以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性: 兼论古地震研究中的若干问题[J]. 地质通报, 2007,26(6):650-660. |
[42] |
LIU-ZENG J, SHAO Y, KLINGER Y, et al. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China[J]. Journal of Geophysical Research: Solid Earth, 2015,120(12):8304-8333.
DOI URL |
[43] |
SHAO Y, LIU-ZENG J, OSKIN M E, et al. Paleoseismic investigation of the Aksay Restraining Double Bend, Altyn Tagh Fault, and its implication for barrier-breaching ruptures[J]. Journal of Geophysical Research: Solid Earth, 2018,123(5):4307-4330.
DOI URL |
[44] | 袁兆德, 刘静, 周游, 等. 阿尔金断裂中段乌尊硝尔段古地震记录与级联破裂行为[J]. 中国科学: 地球科学, 2020,50(1):50-65. |
[45] | 李天袑, 杜其芳, 游泽李, 等. 鲜水河断裂带炉霍县卡扎村大探槽古地震研究[J]. 四川地震, 1994(3):1-10. |
[46] | 冉勇康, 陈立春, 程建武, 等. 安宁河断裂冕宁以北晚第四纪地表变形与强震破裂行为[J]. 中国科学: D辑, 2008,38(5):543-554. |
[47] | 王虎, 冉勇康, 李彦宝, 等. 则木河断裂上古地震破裂与小型三角状拉分盆地演化[J]. 中国科学: 地球科学, 2013,43(7):1106-1114. |
[48] | 李西, 冉勇康, 吴富峣, 等. 小江断裂带西支晚第四纪强震破裂特征[J]. 地震地质, 2018,40(6):1179-1203. |
[49] | 李西, 冉勇康, 陈立春, 等. 红河断裂带南段全新世地震活动证据[J]. 地震地质, 2016,38(3):596-604. |
[50] | 吴卫民, 李克, 马保起, 等. 大青山山前断裂带大型组合探槽的全新世古地震研究[M]. 北京: 地震出版社, 1995. |
[51] | RAN Y K, FANG Z J, DUAN R T, et al. Model of paleoearthquakes along baying segment of the northern marginal fault of Fanshan Basin in Hebei Province[J]. Earthquake Research in China, 1996,10(1):87-100. |
[52] | 邓起东, 冯先岳, 杨晓平, 等. 利用大型探槽研究新疆北天山玛纳斯和吐谷鲁逆断裂-褶皱带全新世古地震.活动断裂研究(3)[M]. 北京: 地震出版社, 1994. |
[53] | DENG Q D, ZHANG P Z, XU X W, et al. Paleoseismology of the northern piedmont of Tianshan Mountains, northwestern China[J]. Journal of Geophysical Research: Solid Earth, 1996,101(B3):5895-5920. |
[54] | 冯先岳. 新疆古地震[M]. 乌鲁木齐: 新疆科技卫生出版社, 1997. |
[55] | 冉勇康, 王虎, 陈立春, 等. 龙门山断裂带晚第四纪的大地震活动: 来自古地震研究的资料[J]. 地球物理学报, 2018,61(5):1938-1948. |
[56] | LIU-ZENG J, KLINGER Y, SIEH K, et al. Serial ruptures of the San Andreas fault, Carrizo Plain, California, revealed by three-dimensional excavations[J]. Journal of Geophysical Research: Solid Earth, 2006,111(B2):B02306. |
[57] | KONDO H, ÖZAKSOY V, YıLDIRIM C. Slip history of the 1944 Bolu-Gerede earthquake rupture along the North Anatolian fault system: implications for recurrence behavior of multisegment earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2010,115(B4):B04316. |
[58] |
BEMIS S P, MICKLETHWAITE S, TURNER D, et al. Ground-based and UAV-Based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 2014,69:163-178.
DOI URL |
[59] |
REITMAN N G, BENNETT S E K, GOLD R D, et al. High-resolution trench photomosaics from image-based modeling: workflow and error analysis[J]. Bulletin of the Seismological Society of America, 2015,105(5):2354-2366.
DOI URL |
[60] |
AKCIZ S O, LUDWIG L G, ARROWSMITH J R, et al. Century-long average time intervals between earthquake ruptures of the San Andreas fault in the Carrizo Plain, California[J]. Geology, 2010,38(9):787-790.
DOI URL |
[61] |
FUMAL T E, WELDON R J, BIASI G P, et al. Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California, paleoseismic site: AD 500 to present[J]. Bulletin of the Seismological Society of America, 2002,92(7):2726-2760.
DOI URL |
[62] |
KLINGER Y, LE BÉON M, LE BÉON M . 5000 yr of paleoseismicity along the southern Dead Sea fault[J]. Geophysical Journal International, 2015,202(1):313-327.
DOI URL |
[63] | ROCKWELL T K. Recognition of individual paleoseismic events in strike-slip environments[R]. Denver: United States Geological Survey, 1987. |
[64] |
SCHARER K M, WELDON R J, FUMAL T E, et al. Paleoearthquakes on the Southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: a new method for evaluating paleoseismic evidence and earthquake horizons[J]. Bulletin of the Seismological Society of America, 2007,97(4):1054-1093.
DOI URL |
[65] |
SCHARER K, WELDON R, BIASI G, et al. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to present[J]. Journal of Geophysical Research: Solid Earth, 2017,122(3):2193-2218.
DOI URL |
[66] |
WELDON R J, FUMAL T E, POWERS T J, et al. Structure and earthquake offsets on the San Andreas fault at the Wrightwood, California, paleoseismic site[J]. Bulletin of the Seismological Society of America, 2002,92(7):2704-2725.
DOI URL |
[67] | 张培震, 邓起东, 徐锡伟, 等. 盲断裂、褶皱地震与新疆1906年玛纳斯地震[J]. 地震地质, 1994,16(3):193-204. |
[68] | YEATS R S, SIEH K E, ALLEN C R. The geology of earthquakes[M]. New York: Oxford University Press, 1996. |
[69] |
STEWART I S, HANCOCK P L. What is a fault scarp?[J]. Episodes, 1990,13(4):256-263.
DOI URL |
[70] | STEIN R, YEATS R S. Hidden Earthquakes[J]. Scientific American, 1989,260:48-57. |
[71] | 徐心悦, 袁兆德, 邵延秀, 等. 探槽古地震事件识别标志及其定量化: 以活动走滑断裂为例[J]. 地质通报, 2019,38(6):977-992. |
[72] | 冉勇康, 王虎, 李彦宝, 等. 中国大陆古地震研究的关键技术与案例解析(1): 走滑活动断裂的探槽地点、布设与事件识别标志[J]. 地震地质, 2012,34(2):197-210. |
[73] | 冉勇康, 李彦宝, 杜鹏, 等. 中国大陆古地震研究的关键技术与案例解析(3): 正断层破裂特征、环境影响与古地震识别[J]. 地震地质, 2014,36(2):287-301. |
[74] | 袁兆德, 刘静, 李占飞, 等. 走滑断裂古地震探槽选址范例[J]. 地质通报, 2016,35(11):1807-1828. |
[75] |
FUMAL T E, SCHWARTZ D P, PEZZOPANE S K, et al. A 100-year average recurrence interval for the San Andreas Fault at Wrightwood, California[J]. Science, 1993,259(5092):199-203.
DOI URL |
[76] |
SCHARER K, WELDON R, STREIG A, et al. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace[J]. Geophysical Research Letters, 2014,41(13):4527-4534.
DOI URL |
[77] |
FERRATER M, ECHEVERRIA A, MASANA E, et al. A 3D measurement of the offset in paleoseismological studies[J]. Computers & Geosciences, 2016,90:156-163.
DOI URL |
[78] | 郑文俊, 雷启云, 杜鹏, 等. 激光雷达(LiDAR): 获取高精度古地震探槽信息的一种新技术[J]. 地震地质, 2015,37(1):232-241. |
[79] | 魏占玉, 石峰, 高翔, 等. 汶川地震地表破裂面形貌特征[J]. 地学前缘, 2010,17(5):53-66. |
[80] |
HADDAD D E, AKCIZ S O, ARROWSMITH J R, et al. Applications of airborne and terrestrial laser scanning to paleoseismology[J]. Geosphere, 2012,8(4):771-786.
DOI URL |
[81] |
ANGSTER S, WESNOUSKY S, HUANG W, et al. Application of UAV photography to refining the slip rate on the Pyramid Lake Fault Zone, Nevada[J]. Bulletin of the Seismological Society of America, 2016,106(2):785-798.
DOI URL |
[82] | 王朋涛, 邵延秀, 张会平, 等. sUAV摄影技术在活动构造研究中的应用: 以海原断裂骟马沟为例[J]. 第四纪研究, 2016,36(2):433-442. |
[83] | SEITZ G G. The paleoseismology of the southern San Andreas fault at Pitman Canyon: implications for fault behavior and paleoseismic methodology[D]. Eugene: University of Oregon, 1999. |
[84] | ANGEW D C, ALLEN C R, CLUFF L S, et al. Probabilities of large earthquakes occurring in California on the San Andreas fault[R]. Denver: United States Geological Survey, 1988. |
[85] |
SHIMAZAKI K, NAKATA T. Time-predictable recurrence model for large earthquakes[J]. Geophysical Research Letters, 1980,7(4):279-282.
DOI URL |
[86] | WALLACE R E. Grouping and migration of surface faulting and variations in slip rates on faults in the Great Basin Province[J]. Bulletin of the Seismological Society of America, 1987,77(3):868-876. |
[87] |
SWAN F H. Temporal clustering of paleoseismic events on the Oued Fodda fault, Algeria[J]. Geology, 1988,16(12):1092-1095.
DOI URL |
[88] | SIEH K, STUIVER M, BRILLINGER D. A more precise chronology of earthquakes produced by the San Andreas fault in southern California[J]. Journal of Geophysical Research: Solid Earth, 1989,94(B1):603-623. |
[89] | GRANT L B, SIEH K. Paleoseismic evidence of clustered earthquakes on the San Andreas fault in the Carrizo Plain, California[J]. Journal of Geophysical Research: Solid Earth, 1994,99(B4):6819-6841. |
[90] |
DAЁRON M, KLINGER Y, TAPPONNIER P, et al. 12000-year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon[J]. Bulletin of the Seismological Society of America, 2007,97(3):749-771.
DOI URL |
[91] |
BIASI G P, LANGRIDGE R M, BERRYMAN K R, et al. Maximum-likelihood recurrence parameters and conditional probability of a ground-rupturing earthquake on the southern Alpine Fault, South Island, New Zealand[J]. Bulletin of the Seismological Society of America, 2015,105(1):94-106.
DOI URL |
[92] |
SCHARER K M, BIASI G P, WELDON II R J, et al. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault[J]. Geology, 2010,38(6):555-558.
DOI URL |
[93] |
WILLIAMS R T, DAVIS J R, GOODWIN L B. Do large earthquakes occur at regular intervals through time? A perspective from the geologic record[J]. Geophysical Research Letters, 2019,46(14):8074-8081.
DOI URL |
[94] |
BIASI G P, WELDON R J, FUMAL T E, et al. Paleoseismic event dating and the conditional probability of large earthquakes on the Southern San Andreas Fault, California[J]. Bulletin of the Seismological Society of America, 2002,92(7):2761-2781.
DOI URL |
[95] | GOES S D B, WARD S N. Synthetic seismicity for the San Andreas fault[J]. Annals of Geophysics, 1994,37(6):1459-1513. |
[96] | BIASI G P, SCHARER K M. Coefficient of variation estimates for the plate boundary fault system of California[C]. AGU Fall Meeting 2015. San Francisco: AGU, 2015: S23A-2696. |
[97] | MCGILL S F, SIEH K. Surficial offsets on the central and eastern Garlock fault associated with prehistoric earthquakes[J]. Journal of Geophysical Research: Solid Earth, 1991,96(B13):21597-21621. |
[98] |
WALLACE R E. Earthquake of August 19, 1966, Varto Area, eastern Turkey[J]. Bulletin of the Seismological Society of America, 1968,58(1):11-45.
DOI URL |
[99] |
LIU J, KLINGER Y, SIEH K, et al. Six similar sequential ruptures of the San Andreas fault, Carrizo Plain, California[J]. Geology, 2004,32(8):649-652.
DOI URL |
[100] |
WECHSLER N, ROCKWELL T K, KLINGER Y. Variable slip-rate and slip-per-event on a plate boundary fault: the Dead Sea fault in northern Israel[J]. Tectonophysics, 2018,722:210-226.
DOI URL |
[101] |
CHEN T, LIU-ZENG J, SHAO Y, et al. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan fault, northern Tibetan Plateau[J]. Geosphere, 2018,14(3):1165-1186.
DOI URL |
[102] |
KLINGER Y, ETCHEBES M, TAPPONNIER P, et al. Characteristic slip for five great earthquakes along the Fuyun fault in China[J]. Nature Geoscience, 2011,4(6):389-392.
DOI URL |
[103] | MADDEN C, HADDAD D E, SALISBURY J B, et al. Appendix R: compilation of slip in the last event data and analysis of last event, repeated slip, and average displacement for recent and prehistoric ruptures[R]. Denver: USGS, 2013. https://pubs.usgs.gov/of/2013/1165/pdf/ofr2013-1165_appendixR.pdf |
[104] |
MANIGHETTI I, CAULET C, DE BARROS L, et al. Generic along-strike segmentation of a far normal faults, East Africa: implications on fault growth and stress heterogeneity on seismogenic fault planes[J]. Geochemistry, Geophysics, Geosystems, 2015,16(2):443-467.
DOI URL |
[105] | REN Z, ZHANG Z, CHEN T, et al. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. Geological Society of Americal Bulletin, 2016,128(1/2):3-18. |
[106] |
SALISBURY J B, ROCKWELL T K, MIDDLETON T J, et al. LiDAR and field observations of slip distribution for the most recent surface ruptures along the central San Jacinto fault[J]. Bulletin of the Seismological Society of America, 2012,102(2):598-619.
DOI URL |
[107] |
ZIELKE O, ARROWSMITH J R, GRANT LUDWIG L, et al. High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas fault[J]. Bulletin of the Seismological Society of America, 2012,102(3):1135-1154.
DOI URL |
[108] |
ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas fault[J]. Science, 2010,327:1119-1122.
DOI URL |
[109] |
LIN Z, LIU-ZENG J, WELDON R, et al. Modeling repeated coseismic slip to identify and characterize individual earthquakes from geomorphic offsets on strike-slip faults[J]. Earth and Planetary Science Letters, 2020,545:116313.
DOI URL |
[110] |
REITMAN N G, MUELLER K J, TUCKER G E, et al. Offset Channels may not accurately record strike-slip fault displacement: evidence from landscape evolution models[J]. Journal of Geophysical Research: Solid Earth, 2019,124(12):13427-13451.
DOI URL |
[111] | MCGILL S F, RUBIN C M. Surficial slip distribution on the central Emerson fault during the June 28, 1992, Landers earthquake, California[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B3):4811-4833. |
[112] | WELDON R J, MCCALPIN J P, ROCKWELL T K. Chapter 6 Paleoseismology of strike-slip tectonic environments[J]. International Geophysics, 1996,62:271-329. |
[113] | 邵延秀, 刘静, KLINGER Y, 等. 海原断裂干盐池探槽揭示非特征性古地震序列[J]. 地质通报, 2016,35(5):711-726. |
[114] |
KEEFER D K. Landslides caused by earthquakes[J]. Geological Society of America Bulletin, 1984,95(4):406-421.
DOI URL |
[115] |
XU C, XU X W, SHEN L L, et al. Optimized volume models of earthquake-triggered landslides[J]. Scientific Reports, 2016,6:29797.
DOI URL |
[116] |
YIN Y P, WANG F W, SUN P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009,6(2):139-152.
DOI URL |
[117] |
XU Y R, ALLEN M B, ZHANG W H, et al. Landslide characteristics in the Loess Plateau, northern China[J]. Geomorphology, 2020,359:107150.
DOI URL |
[118] | 徐岳仁, 杜朋, 李文巧, 等. 1718年通渭M 7.5地震滑坡特征分析: 黄土高原历史强震触发滑坡数据库的应用[J]. 地球物理学报, 2020,63(3):1235-1248. |
[119] |
OBERMEIER S F, OLSON S M, GREEN R A. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking[J]. Engineering Geology, 2005,76(3/4):209-234.
DOI URL |
[120] | AMBRASEYS N N. Engineering seismology: Part II[J]. Earthquake Engineering & Structural Dynamics, 1988,17(1):51-105. |
[121] |
LIU-ZENG J, WANG P, ZHANG Z H, et al. Liquefaction in western Sichuan Basin during the 2008 MW 7.9 Wenchuan earthquake, China[J]. Tectonophysics, 2017,694:214-238.
DOI URL |
[122] | 曹振中, 袁晓铭. 砾性土液化原理与判别技术: 以汶川8.0级地震为背景[M]. 北京: 科学出版社, 2015. |
[123] | 曹振中, 袁晓铭, 陈龙伟, 等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010,32(4):645-650. |
[124] | 吴庆龙, 张培震, 张会平, 等. 黄河上游积石峡古地震堰塞溃决事件与喇家遗址异常古洪水灾害[J]. 中国科学: D辑, 2009,39(8):1148-1159. |
[125] | 夏正楷, 杨晓燕, 叶茂林. 青海喇家遗址史前灾难事件[J]. 科学通报, 2003,48(11):1200-1204. |
[126] |
WU Q L, ZHAO Z J, LIU L, et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty[J]. Science, 2016,353(6299):579-582.
DOI URL |
[127] |
ZHANG Y, HUANG C C, PANG J, et al. OSL dating of the massive landslide-damming event in the Jishixia Gorge, on the upper Yellow River, NE Tibetan Plateau[J]. The Holocene, 2015,25(5):745-757.
DOI URL |
[128] | 董广辉, 张帆宇, 刘峰文, 等. 喇家遗址史前灾害与黄河大洪水无关[J]. 中国科学: 地球科学, 2018,48(4):467-475. |
[129] | 李智敏, 李延京, 田勤俭, 等. 拉脊山断裂古地震与喇家遗址灾变事件关系研究[J]. 地震研究, 2014,37(增刊):109-115. |
[130] |
MARCO S, AGNON A. High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform[J]. Tectonophysics, 2005,408(1/2/3/4):101-112.
DOI URL |
[131] | MARCO S, STEIN M, AGNON A, et al. Long-term earthquake clustering: a 50000-year paleoseismic record in the Dead Sea Graben[J]. Journal of Geophysical Research: Solid Earth, 1996,101(B3):6179-6191. |
[132] |
JIANG H, ZHONG N, LI Y, et al. A continuous 13.3-ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau[J]. Scientific Reports, 2017,7:15686.
DOI URL |
[133] | 李林林, 李德文. 古地震学研究新探索: 湖泊沉积古地震研究进展[J]. 地球物理学进展, 2018,33(6):2241-2250. |
[134] |
FORTI P, POSTPISCHL D. Seismotectonic and paleoseismic analyses using karst sediments[J]. Marine Geology, 1984,55(1/2):145-161.
DOI URL |
[135] | LACAVE C, KOLLER M G, EGOZCUE J J. What can be concluded about seismic history from broken and unbroken speleothems?[J]. Journal of Earthquake Engineering, 2004,8(3):431-455. |
[136] | 黄秀铭. 岩溶古地震遗迹的初步研究[J]. 地震地质, 2004,26(2):281-291, 366. |
[137] |
ZHAO X Q, WANG F D, VERHEYDEN S, et al. Earthquake-related speleothem damage: observations from the 2008, MW 7.9 Wenchuan, China[J]. Geomorphology, 2020,358:107130.
DOI URL |
[138] | RICO L, IRVINE U C. Precariously balanced rocks provide clues to fault connections[EB/OL]. [2015-08-07]. https://www.universityofcalifornia.edu/news/precariously-balanced-rocks-provide-clues-fault-connections. |
[139] |
BRUNE J N. Precariously balanced rocks and ground-motion maps for southern California[J]. Seismological Society of America Bulletin, 1996,86:43-54.
DOI URL |
[140] |
BELL J W, BRUNE J N, LIU T, et al. Dating precariously balanced rocks in seismically active parts of California and Nevada[J]. Geology, 1998,26(6):495-498.
DOI URL |
[141] |
BRUNE J N. Precarious-rock constraints on ground motion from historic and recent earthquakes in southern California[J]. Bulletin of the Seismological Society of America, 2002,92(7):2602-2611.
DOI URL |
[142] |
BALCO G, PURVANCE M D, ROOD D H. Exposure dating of precariously balanced rocks[J]. Quaternary Geochronology, 2011,6(3/4):295-303.
DOI URL |
[143] |
GRANT LUDWIG L, BRUNE J N, ANOOSHEHPOOR A, et al. Reconciling precariously balanced rocks (PBRs) with large earthquakes on the San Andreas fault system[J]. Seismological Research Letters, 2015,86(5):1345-1353.
DOI URL |
[144] |
ATWATER B F. Evidence for great Holocene earthquakes along the outer coast of Washington State[J]. Science, 1987,236(4804):942-944.
DOI URL |
[145] |
ATWATER B F, MOORE A L. A tsunami about 1000 years ago in Puget Sound, Washington[J]. Science, 1992,258(5088):1614-1617.
DOI URL |
[146] |
SATAKE K, SHIMAZAKI K, TSUJI Y, et al. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700[J]. Nature, 1996,379:246-249.
DOI URL |
[147] |
DAWSON A G, SHI S. Tsunami deposits[J]. Pure and Applied Geophysics, 2000,157(6/7/8):875-897.
DOI URL |
[148] |
MORTON R A, GELFENBAUM G, JAFFE B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Sedimentary Geology, 2007,200(3/4):184-207.
DOI URL |
[149] | 王锋, 刘昌森, 章振铨. 中国古籍中的地震海啸记录[J]. 中国地震, 2005,21(3):437-443. |
[150] | 石峰, 毕丽思, 谭锡斌, 等. 渤海海域历史上发生过地震诱发海啸吗?[J]. 地球物理学报, 2012,55(9):3097-3104. |
[151] |
SUN L G, ZHOU X, HUANG W, et al. Preliminary evidence for a 1000-year-old tsunami in the South China Sea[J]. Scientific Reports, 2013,3:1655.
DOI URL |
[152] |
WINTLE A G. Luminescence dating: where it has been and where it is going[J]. Boreas, 2008,37(4):471-482.
DOI URL |
[153] |
LE BÉON M, TSENG Y C, KLINGER Y, et al. High-resolution stratigraphy and multiple luminescence dating techniques to reveal the paleoseismic history of the central Dead Sea fault (Yammouneh fault, Lebanon)[J]. Tectonophysics, 2018,738/739:1-15.
DOI URL |
[154] |
BERGER G W, SAWYER T L, UNRUH J R. Single-and multigrain luminescence dating of sediments related to the Greenville fault, eastern San Francisco Bay area, California[J]. Bulletin of the Seismological Society of America, 2010,100(3):1051-1072.
DOI URL |
[155] |
LU Y, PRESCOTT J R, HUA Z, et al. Optical dating of colluvial deposits from Xiyangfang, China, and the relation to palaeo-earthquake events[J]. Quaternary Science Reviews, 2002,21(8/9):1087-1097.
DOI URL |
[156] |
PORAT N, WINTLE A G, AMIT R, et al. Late Quaternary earthquake chronology from luminescence dating of colluvial and alluvial deposits of the Arava Valley, Israel[J]. Quaternary research, 1996,46(2):107-117.
DOI URL |
[157] |
DULLER G A. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating[J]. Boreas, 2008,37(4):589-612.
DOI URL |
[158] |
WALLINGA J. Optically stimulated luminescence dating of fluvial deposits: a review[J]. Boreas, 2002,31(4):303-322.
DOI URL |
[159] |
MURRAY A, THOMSEN K J, MASUDA N, et al. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals[J]. Radiation Measurements, 2012,47(9):688-695.
DOI URL |
[160] | 左昕昕, 吴乃琴. 植硅体14C测年研究: 过去、现在与未来[J]. 第四纪研究, 2019,39(1):59-66. |
[161] | 张金玉, 刘静, 王恒, 等. 基岩断面宇宙成因核素暴露定年: 重建正断层古地震序列[J]. 地震地质, 2018,40(5):1149-1169. |
[162] | 邹俊杰, 何宏林, 横山祐典, 等. 基岩断层面的古地震研究方法: 国内外应用现状及展望[J]. 地震地质, 2019,41(6):1539-1562. |
[163] |
COWGILL E, BERNARDIN T S, OSKIN M E, et al. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake[J]. Geosphere, 2012,8(4):787-804.
DOI URL |
[164] |
HUDNUT K W, BORSA A, GLENNIE C, et al. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake (MW 7.1) from airborne laser swath mapping[J]. Bulletin of the Seismological Society of America, 2002,92(4):1570-1576.
DOI URL |
[165] |
OSKIN M E, ARROWSMITH J R, CORONA A H, et al. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LIDAR[J]. Science, 2012,335(6069):702-705.
DOI URL |
[166] | 刘静, 陈涛, 张培震, 等. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构[J]. 科学通报, 2013,58(1):41-45. |
[167] | 魏占玉, RAMON A, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015,37(2):636-648. |
[168] | 王鹏, 刘小利, 刘静, 等. 虚拟现实技术及其在地球科学中的应用[J]. 地质科学, 2020,55(1):290-304. |
[169] |
XU Y R, HE H L, DENG Q D, et al. The CE 1303 Hongdong earthquake and the Huoshan Piedmont fault, Shanxi Graben: implications for magnitude limits of normal fault earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2018,123(4):3098-3121.
DOI URL |
[170] | 徐锡伟, 邓起东, 董瑞树, 等. 山西地堑系强震的活动规律和危险区段的研究[J]. 地震地质, 1992,14(4):305-316. |
[171] | 徐岳仁, 何宏林, 李文巧, 等. 1303年洪洞地震宏观震中修订的新证据[J]. 地震地质, 2018,40(5):945-966. |
[1] | 李德文, 李林林, 马保起, 张健. 湖泊沉积对地震动的响应特征与古地震序列重建[J]. 地学前缘, 2021, 28(2): 232-245. |
[2] | 赖忠平, 杨安娜, 丛禄, 刘维明, 王昊. 山地灾害沉积物的测年综述[J]. 地学前缘, 2021, 28(2): 1-18. |
[3] | 张清志, 唐文清, 刘宇平, 李军. 基于GPS监测芦山MS 7.0级地震同震位移[J]. 地学前缘, 2013, 20(6): 42-47. |
[4] | 王虎, 冉勇康, 陈立春, 陈文山, 杨志成, 徐锡伟. 汶川Ms 8.0级地震地表破裂带近断层水平缩短量研究[J]. 地学前缘, 2010, 17(5): 43-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||