地学前缘 ›› 2020, Vol. 27 ›› Issue (4): 322-331.DOI: 10.13745/j.esf.sf.2019.8.16
马骏(), 宋金明*(
), 李学刚, 袁华茂, 李宁, 段丽琴, 王启栋
收稿日期:
2019-01-09
修回日期:
2019-04-08
出版日期:
2020-07-25
发布日期:
2020-07-25
通信作者:
宋金明
作者简介:
马 骏(1992—),男,博士研究生,主要从事海洋生物地球化学研究。E-mail: mjqdio@163.com
基金资助:
MA Jun(), SONG Jinming*(
), LI Xuegang, YUAN Huamao, LI Ning, DUAN Liqin, WANG Qidong
Received:
2019-01-09
Revised:
2019-04-08
Online:
2020-07-25
Published:
2020-07-25
Contact:
SONG Jinming
摘要:
作为大洋典型地貌特征的海山,其邻近的海洋生境并不被人熟知。依据2014年冬季对热带西太平洋Y3海山及其邻近海域的综合调查,首次探讨了该海山区海水中营养盐的分布特征及其与生态环境的耦合关系。结果表明Y3海山区是典型的热带寡营养海域。在50~125 m的深度,温跃层和高盐区双重作用对底部高浓度营养盐向上输送的阻碍,是导致真光层上部营养盐浓度较低的重要原因;同时,浮游植物和异养细菌的消耗也加剧了该区域营养盐的缺乏。Y3海山突出的地形地貌对营养盐的分布产生重要的影响,海山对流经的海流产生阻碍,形成上升流,使底部高浓度的营养盐突破温跃层和高盐区的阻碍向上输送,从而使海山周围营养盐的平均浓度高于远离海山的海域。相关性分析显示,Y3海山区真光层中营养盐浓度与温度、盐度、叶绿素a浓度和异养细菌丰度分别呈负相关、正相关、负相关(除NO2-N外)和负相关关系。海山区特殊的营养盐分布及其与生态环境的耦合是其成为一种独特的大洋生态系统的重要因素。
中图分类号:
马骏, 宋金明, 李学刚, 袁华茂, 李宁, 段丽琴, 王启栋. 西太平洋Y3海山对营养盐的影响及其生态环境效应[J]. 地学前缘, 2020, 27(4): 322-331.
MA Jun, SONG Jinming, LI Xuegang, YUAN Huamao, LI Ning, DUAN Liqin, WANG Qidong. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean[J]. Earth Science Frontiers, 2020, 27(4): 322-331.
水深/m | NO3-N浓度/(μmol·L-1) | NO2-N浓度/(μmol·L-1) | PO4-P浓度/(μmol·L-1) | SiO3-Si浓度/(μmol·L-1) | ||||
---|---|---|---|---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | 范围 | 均值 | 范围 | 均值 | |
0 | δ~0.27 | 0.04 | δ~0.02 | δ | δ~0.09 | 0.03 | 0.21~2.53 | 0.48 |
30 | δ | δ | δ~0.02 | δ | 0.02~0.04 | 0.03 | 0.16~0.52 | 0.35 |
75 | δ~0.40 | 0.05 | δ~0.21 | 0.06 | 0.09~0.25 | 0.19 | 0.30~3.22 | 1.64 |
100 | δ~12.35 | 2.43 | 0.01~0.38 | 0.24 | 0.16~1.14 | 0.41 | 1.32~11.45 | 3.80 |
150 | 3.29~14.11 | 9.36 | 0.03~0.08 | 0.05 | 0.78~1.58 | 1.05 | 11.36~24.46 | 14.47 |
200 | 3.19~26.34 | 16.12 | 0.02~0.07 | 0.05 | 0.81~2.16 | 1.50 | 10.59~40.35 | 24.32 |
总体 | δ~26.34 | 4.67 | δ~0.38 | 0.07 | δ~2.16 | 0.53 | 0.160~40.35 | 7.51 |
表1 Y3海山区不同水层营养盐浓度的范围和均值
Table 1 Ranges and averages of nutrient concentrations in different water layers of the Y3 seamount area
水深/m | NO3-N浓度/(μmol·L-1) | NO2-N浓度/(μmol·L-1) | PO4-P浓度/(μmol·L-1) | SiO3-Si浓度/(μmol·L-1) | ||||
---|---|---|---|---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | 范围 | 均值 | 范围 | 均值 | |
0 | δ~0.27 | 0.04 | δ~0.02 | δ | δ~0.09 | 0.03 | 0.21~2.53 | 0.48 |
30 | δ | δ | δ~0.02 | δ | 0.02~0.04 | 0.03 | 0.16~0.52 | 0.35 |
75 | δ~0.40 | 0.05 | δ~0.21 | 0.06 | 0.09~0.25 | 0.19 | 0.30~3.22 | 1.64 |
100 | δ~12.35 | 2.43 | 0.01~0.38 | 0.24 | 0.16~1.14 | 0.41 | 1.32~11.45 | 3.80 |
150 | 3.29~14.11 | 9.36 | 0.03~0.08 | 0.05 | 0.78~1.58 | 1.05 | 11.36~24.46 | 14.47 |
200 | 3.19~26.34 | 16.12 | 0.02~0.07 | 0.05 | 0.81~2.16 | 1.50 | 10.59~40.35 | 24.32 |
总体 | δ~26.34 | 4.67 | δ~0.38 | 0.07 | δ~2.16 | 0.53 | 0.160~40.35 | 7.51 |
图3 Y3海山区A、B断面营养盐的分布 a—A断面NO3-N;b—A断面NO2-N;c—A断面PO4-P;d—A断面SiO3-Si;e—B断面NO3-N;f—B断面NO2-N;g—B断面PO4-P;h—B断面SiO3-Si。
Fig.3 Distributions of nutrients in sections A and B of the Y3 seamount area
图4 Y3海山区A、B断面真光层中营养盐的平均浓度
Fig.4 Average concentrations of nutrients at different sampling stations in the euphotic zone of sections A and B of the Y3 seamount area
图5 Y3海山区与C断面在75、100和200 m水层及真光层中营养盐平均浓度比较 *表示差异显著(P<0.05),**表示差异极显著(P<0.01)。
Fig.5 Comparisons of the Y3 seamount area vs. section C for the average nutrient concentrations in the water layers at 75, 100 and 200 m and in the euphotic zone
参数 | NO3-N浓度 | NO2-N浓度 | PO4-P浓度 | SiO3-Si浓度 |
---|---|---|---|---|
温度 | -0.795** | -0.146 | -0.934** | -0.901** |
盐度 | 0.197 | 0.540** | 0.340** | 0.243* |
Chl a浓度 | -0.243* | 0.385** | -0.185 | -0.236* |
异养细菌 丰度 | -0.673** | -0.196 | -0.792** | -0.743** |
表2 Y3海山区真光层中营养盐浓度与温度、盐度、Chl a浓度和异养细菌丰度的相关性
Table 2 Correlations between nutrient concentration and temperature,salinity,Chl a concentration or heterotrophic bacteria abundance in the euphotic zone of the Y3 seamount area
参数 | NO3-N浓度 | NO2-N浓度 | PO4-P浓度 | SiO3-Si浓度 |
---|---|---|---|---|
温度 | -0.795** | -0.146 | -0.934** | -0.901** |
盐度 | 0.197 | 0.540** | 0.340** | 0.243* |
Chl a浓度 | -0.243* | 0.385** | -0.185 | -0.236* |
异养细菌 丰度 | -0.673** | -0.196 | -0.792** | -0.743** |
水深/m | Chl a浓度/(mg·m-3) | 异养细菌丰度/(105 cells·mL-1) | ||
---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | |
0 | 0.006~0.053 | 0.020 | 2.263~5.329 | 3.565 |
30 | 0.007~0.051 | 0.022 | 2.51~5.251 | 3.594 |
75 | 0.033~0.314 | 0.096 | 1.743~4.202 | 3.369 |
100 | 0.017~0.199 | 0.108 | 1.411~3.332 | 2.132 |
150 | 0.009~0.149 | 0.038 | 0.907~1.828 | 1.184 |
200 | 0.006~0.035 | 0.016 | 0.699~1.628 | 1.087 |
均值 | 0.006~0.314 | 0.050 | 0.699~5.329 | 2.488 |
表3 Y3海山区不同水层Chl a浓度和异养细菌丰度的范围和均值
Table 3 Ranges and averages of Chl a concentrations and heterotrophic bacteria abundances in different water layers of the Y3 seamount area
水深/m | Chl a浓度/(mg·m-3) | 异养细菌丰度/(105 cells·mL-1) | ||
---|---|---|---|---|
范围 | 均值 | 范围 | 均值 | |
0 | 0.006~0.053 | 0.020 | 2.263~5.329 | 3.565 |
30 | 0.007~0.051 | 0.022 | 2.51~5.251 | 3.594 |
75 | 0.033~0.314 | 0.096 | 1.743~4.202 | 3.369 |
100 | 0.017~0.199 | 0.108 | 1.411~3.332 | 2.132 |
150 | 0.009~0.149 | 0.038 | 0.907~1.828 | 1.184 |
200 | 0.006~0.035 | 0.016 | 0.699~1.628 | 1.087 |
均值 | 0.006~0.314 | 0.050 | 0.699~5.329 | 2.488 |
[1] | SONG J M. Biogeochemical processes of biogenic elements in China marginal seas[M]. Berlin, Germany: Springer Science and Business Media, 2010: 1-62. |
[2] | 宋金明, 袁华茂. 黑潮与邻近东海生源要素的交换及其生态环境效应[J]. 海洋与湖沼, 2017, 48(6):1169-1177. |
[3] | XING J, SONG J, YUAN H, et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China[J]. Science of the Total Environment, 2017, 576:617-627. |
[4] | 米铁柱, 姚庆祯, 孟佳, 等. 2011年春、夏季黄海、东海营养盐分布特征研究[J]. 海洋与湖沼, 2012, 43(3):678-688. |
[5] | MA J, SONG J, LI X, et al. Environmental characteristics in three seamount areas of the Tropical Western Pacific Ocean: focusing on nutrients[J]. Marine Pollution Bulletin, 2019, 143:163-174. |
[6] | 宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10):1-13. |
[7] | 邢建伟, 宋金明, 袁华茂, 等. 胶州湾夏秋季大气湿沉降中的营养盐及其入海的生态效应[J]. 生态学报, 2017, 37(14):4817-4830. |
[8] | 柯志新, 黄良民, 谭烨辉, 等. 2008年夏末南海北部叶绿素a的空间分布特征及其影响因素[J]. 热带海洋学报, 2013, 32(4):51-57. |
[9] | 冷晓云, 杨阳, 孙军, 等. 夏季南海西部中尺度物理过程对营养盐和叶绿素a分布特征的影响[J]. 海洋学报, 2016, 38(4):66-75. |
[10] | 李佳俊, 谭烨辉, 周林滨, 等. 南海东北部贫营养海区营养盐对浮游植物生长的限制[J]. 海洋通报, 2016, 35(5):562-570. |
[11] | 张文静, 孙晓霞, 陈芸燕, 等. 2014年冬季热带西太平洋雅浦Y3海山浮游植物叶绿素a浓度及粒级结构[J]. 海洋与湖沼, 2016, 47(4):739-747. |
[12] | EPP D, SMOOT N C. Distribution of seamounts in the North Atlantic[J]. Nature, 1989, 337:254. |
[13] | 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11):1209-1216. |
[14] | 马骏, 宋金明, 李学刚, 等. 大洋海山及其生态环境特征研究进展[J]. 海洋科学, 2018, 42(6):150-160. |
[15] | 石学法, 任向文, 刘季花. 太平洋海山成矿系统与成矿作用过程[J]. 地学前缘, 2009, 16(6):55-65. |
[16] | JANSA L. 太平洋西北平顶海山上环礁型碳酸盐建造与白垩纪赤道洋流(英文)[J]. 地学前缘, 2005, 12(2):151-161. |
[17] |
READ J, POLLARD R. An introduction to the physical oceanography of six seamounts in the southwest Indian Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 136:44-58.
DOI URL |
[18] |
CLARK M R, ROWDEN A A, SCHLACHER T, et al. The ecology of seamounts: structure, function, and human impacts[J]. Annual Review of Marine Science, 2010, 2:253-278.
DOI URL |
[19] | 任向文, PULYAEVA I, 吕华华, 等. 麦哲伦海山群MK海山富钴结壳钙质超微化石生物地层学研究[J]. 地学前缘, 2017, 24(1):276-296. |
[20] | WHITE M, BASHMACHNIKOV I, AR STEGUI J, et al. Physical processes and seamount productivity[M]//PITCHER T J, MAROTO T, HART P J, et al. Seamounts: ecology, fisheries and conservation. Oxford, UK: Blackwell Publishing, 2007: 65-84. |
[21] |
HU D, WU L, CAI W, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522:299.
DOI URL |
[22] |
MESSI M, RADENAC M H. Seasonal variability of the surface chlorophyll in the western tropical Pacific from SeaWiFS data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(10):1581-1600.
DOI URL |
[23] | YESSON C, CLARK M R, TAYLOR M L, et al. The global distribution of seamounts based on 30 arc seconds bathymetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(4):442-453. |
[24] | GAN B, WU L. Possible origins of the western pacific warm pool decadal variability[J]. Advances in Atmospheric Sciences, 2012, 29(1):169-176. |
[25] |
TOOLE J, ZOU E, MILLARD R. On the circulation of the upper waters in the western equatorial Pacific Ocean[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1988, 35(9):1451-1482.
DOI URL |
[26] | 赵丽, 赵燕楚, 王超锋, 等. 热带西太平洋Y3和M2海山微食物网主要类群生态分布与比较[J]. 海洋与湖沼, 2017, 48(6):1446-1455. |
[27] | 代晟, 孙晓霞, 梁俊华, 等. 2016年春季西太平洋M2海山浮游植物粒级结构与初级生产力研究[J]. 海洋与湖沼, 2017, 48(6):1456-1464. |
[28] | WANG F, LI Y, ZHANG Y, et al. The subsurface water in the North Pacific tropical gyre[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 75:78-92. |
[29] | 钱宏林, 齐雨藻. 热带西太平洋叶绿素 a 的分布与环境因素之间的关系[J]. 暨南大学学报(自然科学与医学版), 1992(3):116-123. |
[30] | 李俊磊, 孙晓霞, 张文静, 等. 2014年冬季西太平洋浮游植物光合作用特征[J]. 海洋与湖沼, 2016, 47(5):935-944. |
[31] | SALIHOGLU B, GARCON V, OSCHLIES A, et al. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: a modeling study at BATS[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(1):73-107. |
[32] |
GENIN A, BOEHLERT G W. Dynamics of temperature and chlorophyll structures above a seamount: an oceanic experiment[J]. Journal of Marine Research, 1985, 43(4):907-924.
DOI URL |
[33] | MANASRAH R, RAHEED M, BADRAN M I. Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea[J]. Oceanologia, 2006, 48(2):237-253. |
[34] |
MARTY J C, CHIAV RINI J, PIZAY M D, et al. Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991-1999)[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(11):1965-1985.
DOI URL |
[35] | 宋金明, 李鹏程, 詹滨秋. 热带西太平洋定点海域(4°S 156°E)营养盐变化规律及降水对海水营养物质影响的研究[J]. 海洋科学集刊, 1997(1):133-141. |
[36] | 王桂云, BARBER R T. 赤道太平洋初级生产力对El Niño事件响应的综合分析[J]. 黄渤海海洋, 1991(2):17-25. |
[37] |
DE SOUZA C S, DA LUZ J A G, MACEDO S, et al. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic[J]. Marine and Freshwater Research, 2013, 64(2):168-184.
DOI URL |
[38] | EKAU W, KNOPPERS B. An introduction to the pelagic system of the North-East and East Brazilian shelf[J]. Archive of Fishery and Marine Research, 1999, 47(2/3):113-132. |
[39] |
SONNEKUS M J, BORNMAN T G, CAMPBELL E E. Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 136:59-72.
DOI URL |
[40] |
DOWER J F, MACKAS D L. “Seamount effects” in the zooplankton community near Cobb Seamount[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43(6):837-858.
DOI URL |
[41] |
LUECK R G, MUDGE T D. Topographically induced mixing around a shallow seamount[J]. Science, 1997, 276:1831-1833.
DOI URL |
[42] |
MOURINO B, FERN NDEZ E, SERRET P, et al. Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic)[J]. Oceanologica Acta, 2001, 24(2):167-185.
DOI URL |
[43] |
DOWER J, FREELAND H, JUNIPER K. A strong biological response to oceanic flow past Cobb Seamount[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1992, 39(7/8):1139-1145.
DOI URL |
[44] |
ODATE T, FURUYA K. Well-developed subsurface chlorophyll maximum near Komahashi No. 2 Seamount in the summer of 1991[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(10):1595-1607.
DOI URL |
[45] | RODEN G I. Effects of the Fieberling seamount group upon flow and thermohaline structure in the spring of 1991[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5):9941-9961. |
[46] | COMEAU L A, VEZINA A F, BOURGEOIS M, et al. Relationship between phytoplankton production and the physical structure of the water column near Cobb Seamount, northeast Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42(6):993-1005. |
[47] | BRICAUD A, BABIN M, MOREL A, et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization[J]. Journal of Geophysical Research: Oceans, 1995, 100(C7):13321-13332. |
[48] | 齐雨藻, 钱宏林. 热带西太平洋叶绿素a的时空分布[J]. 暨南大学学报(自然科学与医学版), 1992(3):103-115, 123. |
[49] | 李祥付, 徐杰, 施震, 等. 珠江口异养细菌时空分布特征及其调控机制[J]. 热带海洋学报, 2018, 37(1):27-36. |
[50] | 张武昌, 陈雪, 李海波, 等. 海洋浮游微食物网对氮、磷营养盐的再生研究综述[J]. 海洋通报, 2016, 35(3):241-251. |
[51] |
GOLDMAN J C, CARON D A, DENNETT M R. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio1[J]. Limnology and Oceanography, 1987, 32(6):1239-1252.
DOI URL |
[52] |
CARON D. Inorganic nutrients, bacteria, and the microbial loop[J]. Microbial Ecology, 1994, 28(2):295-298.
DOI URL |
[53] | 张霞, 黄小平, 施震, 等. 珠江口异养细菌丰度与环境因子的耦合关系[J]. 海洋学报, 2012, 34(6):228-237. |
[54] |
FALKOWSKI P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387:272.
DOI URL |
[55] | KIRCHMAN D. The uptake of inorganic nutrients by heterotrophic bacteria[J]. Microbial Ecology, 1994, 28(2):255-271. |
[1] | 郭巧娜, 赵岳, 周志芳, 林锦, 戴云峰, 李孟军. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
[2] | 迟明慧, 秦延文, 杨晨晨, 温泉, 孙宁, 竹怀林, 张雷. 潮白河中游沉积物氮磷和有机质分布特征及评价[J]. 地学前缘, 2022, 29(4): 448-454. |
[3] | 任江波, 邓义楠, 赖佩欣, 何高文, 王汾连, 姚会强, 邓希光, 刘永刚. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2): 412-425. |
[4] | 季燕南. 巨型山东龙的系统分类、生活习性与生态环境研究[J]. 地学前缘, 2010, 17(1): 378-390. |
[5] | 王多义 邓美洲 刘应汉 刘亚伟 李幸运 鲁人齐. 天然气中金属微量元素的发现及其生态环境意义[J]. 地学前缘, 2008, 15(6): 124-132. |
[6] | 武雄 韩兵 管清花 张顺峰 高明显 韩永岐 陈鸿汉. 北京市固体矿山生态环境现状及修复对策[J]. 地学前缘, 2008, 15(5): 324-329. |
[7] | 周永章 付善明 张澄博 杨志军 杨小强 党志 陈炳辉. 华南地区含硫化物金属矿山生态环境中的重金属元素地球化学迁移模型——重点对粤北大宝山铁铜多金属矿山的观察[J]. 地学前缘, 2008, 15(5): 248-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||