地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 232-253.DOI: 10.13745/j.esf.sf.2020.3.18

• 特色地域成矿背景与成矿作用 • 上一篇    下一篇

长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析

吕庆田(), 孟贵祥, 严加永, 张昆, 龚雪婧, 高凤霞   

  1. 1.中国地质科学院, 北京 100037
    2.中国地质科学院 地球深部探测中心, 北京 100037
  • 收稿日期:2019-12-10 修回日期:2020-01-30 出版日期:2020-03-25 发布日期:2020-03-25
  • 作者简介:吕庆田(1964—),男,研究员,博士生导师,主要从事矿产勘查技术及应用研究。E-mail: lqt@cags.ac.cn
  • 基金资助:
    国家自然科学基金重点项目(41630320);国家重点研发计划项目(2016YFC0600200)

The geophysical exploration of Mesozoic iron-copper mineral system in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: a synthesis

LÜ Qingtian(), MENG Guixiang, YAN Jiayong, ZHANG Kun, GONG Xuejing, GAO Fengxia   

  1. 1. Chinese Academy of Geological Sciences, Beijing 100037, China
    2. SinoProbe Center, Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2019-12-10 Revised:2020-01-30 Online:2020-03-25 Published:2020-03-25

摘要:

成矿系统是在深部过程驱动下形成的、具有自组织的能量及物质迁移-汇聚系统。系统在形成和演化过程中,在岩石圈不同尺度上留下“痕迹”,这种“痕迹”可以通过地球物理、地球化学和遥感等方法进行探测或观测。文章尝试在成矿系统理论框架下,对近10多年来在长江中下游成矿带进行的多尺度地球物理、地球化学探测结果进行分析,识别典型陆内成矿系统“源区”“通道”“场所”的地球物理、地球化学“痕迹”,尝试构建陆内成矿系统的空间结构模型。主要结论有:(1)长江中下游晚中生代的大规模铁、铜多金属成矿作用是一个完整的成矿系统。该系统包括3个子系统,分别为与高钾钙碱性岩浆岩有关的夕卡岩-斑岩成矿子系统、与橄榄安粗岩有关的陆相火山岩铁(硫)成矿子系统和与碱性岩有关的铜-金(铀)成矿子系统。(2)成矿系统的“源区”来自富集地幔的熔融、底侵,并在壳/幔边界与下地壳物质的混合,具有多级分布特点。幔源岩浆与地壳物质混合的比例决定了成矿金属的类型。(3)成矿带发育的“鳄鱼嘴”构造是铁铜成矿系统的主干“通道”。成矿系统“末端”矿质沉淀的“场所”主要受近地表褶皱、断裂、层间滑脱断层,以及由它们形成的断裂(裂隙)网络控制。(4)区域磁异常、放射性和地球化学异常是成矿系统残留“痕迹”的响应和“标识”。通过分析不同尺度的“标识”特征,可以深入认识成矿系统的空间结构,并可用于深部成矿预测。

关键词: 长江中下游成矿带, 岩石圈结构, 深部过程, 成矿系统, 地球物理探测

Abstract:

Mineral systems driven by deep Earth processes are self-organized critical systems involving the transfer and accumulation of mass and energy. During the formation and evolution of such a system, “fingerprints” are left at different scales across the lithosphere, which can be detected or observed through geophysical, geochemical, and remote sensing methods. In this study, we first analysed multi-scale geophysical and geochemical data over the last decade from the Middle and Lower Yangtze River Metallogenic Belt. Based on the theoretical framework of a deep-seated mineral system, we then attempted to identify the geophysical and geochemical “fingerprints” for the source, channel, and site of a typical intracontinental mineral system. Finally, we attempt to establish a structural model of the mineral system. We concluded that the Late Mesozoic large-scale Fe-Cu polymetallic mineralization in the Middle and Lower Yangtze River Metallogenic Belt may be considered a holistic mineral system, consisting of three subsystems: (1)a skarn-porphyry subsystem related to high-K calc-alkaline magmatic rocks,(2) a terrestrial volcanic iron (sulphur) subsystem related to shoshonite formation, and (3) a Cu-Au (uranium) subsystem related to alkaline rocks. The source area of the mineral system was derived from the melting and underplating of an enriched mantle and subsequent multi-level mixing with lower crustal materials at the crust/mantle boundary. The type of metal formed depended upon the mixing ratio of the mantle-derived magma and crust materials. Moreover, the “crocodile” structure developed in the Middle and Lower Yangtze River Metallogenic Belt is the main channel of the Fe-Cu mineral system. The site of ore precipitation (“termination” of the mineral system)was predominantly controlled by near-surface folds, faults, interlayer detachment faults, and their resultant fracture network. Regional magnetic, radioactive, and geochemical data are the signatures (or “fingerprints”) of a mineral system; by analysing these multi-scale signatures, we can deepen our understanding of the spatial structures of mineral systems and effectively predict deep targets.

Key words: Middle and Lower Reaches of Yangtze River Metallogenic Belt, lithosphere architecture, deep processes, mineral system, geophysical exploration

中图分类号: