地学前缘 ›› 2019, Vol. 26 ›› Issue (4): 287-294.DOI: 10.13745/j.esf.sf.2019.5.29

• 非主题来稿选登 • 上一篇    下一篇

天然黑钨矿可见光催化活性的实验研究

李灵慧,李艳,黎晏彰,鲁安怀,丁竑瑞   

  1. 北京大学 造山带与地壳演化教育部重点实验室; 北京大学 地球与空间科学学院 矿物环境功能北京市重点实验室, 北京 100871
  • 收稿日期:2019-02-28 修回日期:2019-03-19 出版日期:2019-07-25 发布日期:2019-07-25
  • 通讯作者: 李艳(1982—),女,博士,副教授,主要从事地质学、材料及环境矿物学研究。
  • 作者简介:李灵慧(1993—),女,硕士研究生,地质学、材料及环境矿物学专业。
  • 基金资助:
    国家自然科学基金项目(41872042,41522201,41820104003,91851208);国家重点研发计划项目(2016YFC0600608)

Experimental study on the photocatalytic activity of natural wolframite under natural light

LI Linghui,LI Yan,LI Yanzhang,LU Anhuai,DING Hongrui   

  1. Key Laboratory of Orogenic Belts and Crustal Evolution(Ministry of Education), Peking University; Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • Received:2019-02-28 Revised:2019-03-19 Online:2019-07-25 Published:2019-07-25
  • Supported by:
     

摘要: 天然半导体矿物具有优良的日光催化特性。本研究选取天然钨酸盐作为研究对象,对武鸣、栗木、崇义3个不同矿区的天然黑钨矿进行了矿物学及光催化实验探究。利用X射线衍射、拉曼光谱、红外光谱、电子探针微区分析对天然样品的结构与成分进行分析,鉴定其主要矿物相为黑钨矿 (Fe, Mn)[WO4],从武鸣、栗木到崇义矿区,Fe/Mn摩尔分数比从7.1、0.9到0.3依次降低。利用紫外可见漫反射测得武鸣、栗木、崇义地区样品禁带宽度分别为1.5、1.6和1.7 eV,说明其具有良好的可见光响应。在pH为7的条件下用质量浓度为1 g/L的样品对5 mg/L的有机染料亚甲基蓝(MB)进行光催化实验(含0.01 mol/L H2O2),结果表明武鸣地区黑钨矿实验组降解MB的效果最佳,3 h后其效率分别是栗木、崇义地区样品的1.1倍和1.6倍。电子顺磁共振谱检测结果显示,反应过程中均产生氧化性羟自由基(·OH),其中效果最好的武鸣黑钨矿产生的·OH信号更强;不同自由基捕获实验证明·OH在光催化反应过程中起主要作用。进一步选取武鸣黑钨矿开展光催化降解机制研究,实验结果显示:光照下黑钨矿与H2O2共存的实验组对MB的脱色降解率可达99%(3 h),只有黑钨矿的对照组降解7%的MB,只有H2O2的对照组降解31%的MB;黑暗条件下,同时添加黑钨矿与H2O2的对照组对MB的去除率为34%。不同H2O2浓度条件下黑钨矿降解MB符合准一级动力学方程,说明降解过程与催化剂含量无关,H2O2更多的是充当电子受体。分析认为,不同产地黑钨矿日光催化效率与矿物铁含量呈正相关,与禁带宽度呈负相关,推测其反应机理是光催化与芬顿反应协同产生的·OH将MB氧化降解。本研究为开发利用天然矿物治理环境污染提出了新方法。

 

关键词: 黑钨矿, 钨酸盐, 天然半导体矿物, 可见光光催化, 污染降解

Abstract: Natural semiconducting minerals have excellent solar photocatalytic properties. In this study, we selected natural wolframite as the research object. We performed mineralogical and photocatalytic experiments using natural wolframite from three mining areas: Wuming (WM), Limu (LM) and Chongyi (CY). We used X-ray diffraction, Raman and infrared spectroscopy, and electron probe microanalysis to analyze the structure and composition of natural samples. The main mineral phases were identified as natural wolframite in the form of (Fe, Mn)WO4 with decreasing Fe/Mn molar ratios at 7.1, 0.9 and 0.3 for WM, LM and CY mines, respectively. The forbidden band widths for the three mines were 1.5, 1.6 and 1.7 eV, respectively, indicating a good visible light response. Photocatalytic experiments were performed at pH 7. The concentrations of wolframite and methylene blue (MB) were 1 g/L and 5 mg/L, respectively, with 0.01 mol/L H2O2 in the degradation solution. The results showed that the degradation efficiency of WM wolframite was the highest, equaling to 1.1 and 1.6 times that of LM and CY wolframite, respectively. Free radical ·OH was detected in all solutions during the reaction by electron paramagnetic resonance (EPR), with the stronger signal coming from WM wolframite. ·OH was demonstrated as the major reactive oxygen species by using different scavenger in the photocatalytic reaction. The experimental results further showed that the rate of MB decolorization degradation was up to 99% (after 3 hours) in the experimental group where both wolframite and H2O2 were used under light. In the control group, wolframite or H2O2 was used and the MB degradation rates were only 7% and 31% after 3 hours, respectively. Under darkroom condition, the MB removal rate was 34% with additions of wolframite and H2O2. Degradation of MB in wolframite under different H2O2 concentrations was analyzed and found to conform to quasi-first-order kinetics, indicating the degradation process was independent of catalyst content, and H2O2 was more likely to act as an electron acceptor. According to our analysis, under sunlight, the catalytic efficiency of wolframite from all producing areas was positively correlated with Fe content and negatively correlated with band gap width, for which the suggested reaction mechanism involves MB oxidative degradation by ·OH generated by photocatalytic and Fenton reactions. Our study presented a new method of utilizing natural minerals for environmental pollution remediation.

Key words: wolframite, tungstate, natural semiconductor minerals, visible light photocatalysis, pollutant degradation

中图分类号: