地学前缘 ›› 2019, Vol. 26 ›› Issue (4): 159-169.DOI: 10.13745/j.esf.sf.2019.5.10

• 地学前沿探索 • 上一篇    下一篇

量子纠缠技术在地质学上应用的可能性

张旗,焦守涛,李明超,朱月琴,韩帅,刘学龙,金维浚,陈万峰, 刘欣雨   

  1. 1. 中国科学院 地质与地球物理研究所, 北京 100029
    2. 中山大学 地球科学与工程学院, 广东 广州 510275
    3. 天津大学 建筑工程学院, 天津 300350
    4. 自然资源部地质信息技术重点实验室, 北京 100037
    5. 昆明理工大学, 云南 昆明 650093
    6. 兰州大学 地质科学与矿产资源学院, 甘肃 兰州 730000
    7. 西北大学 大陆动力学国家重点实验室, 陕西 西安 710069
  • 收稿日期:2019-03-01 修回日期:2019-05-04 出版日期:2019-07-25 发布日期:2019-07-25
  • 作者简介:张旗(1937—),男,研究员,地球化学专业。
  • 基金资助:
    中国科学院地质与地球物理研究所岩石圈演化国家重点实验室项目(81300001);国家重点研发计划项目(2016YFC0600510,2016YFC0600506);天津市杰出青年科学基金项目(17JCJQJC44000)

Applicability of quantum entanglement technology in geology

ZHANG Qi,JIAO Shoutao,LI Mingchao,ZHU Yueqin,HAN Shuai,LIU Xuelong, JIN Weijun,CHEN Wanfeng,LIU Xinyu   

  1. 1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. School of Earth Sciences & Engineering, Sun Yat-sen University, Guangzhou 510275, China
    3. School of Civil Engineering, Tianjin University, Tianjin 300350, China
    4. Key Laboratory of Geological Information Technology, Ministry of Natural Resources, Beijing 100037, China
    5. Kunming University of Science and Technology, Kunming 650093, China
    6. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
    7. State Key Laboratory of Continental Dynamics, Northwest University, Xian 710069, China
  • Received:2019-03-01 Revised:2019-05-04 Online:2019-07-25 Published:2019-07-25
  • Supported by:
     

摘要: 牛顿力学是研究宏观世界的理论,量子力学是研究微观世界的理论。量子力学中有许多超乎宏观世界的现象,有些很神秘,甚至颠覆了我们对科学的认识,这其中最典型的就是量子纠缠现象。量子纠缠是指两个相互纠缠的量子不管相距多远,它们都不是独立的事件。当你对其中的一个量子进行测量时,另外一个相距很远的量子也可以被感知,可以被关联测量。量子纠缠是量子系统区别于经典系统的最不可思议的特性。量子纠缠正是由于它过于神奇,很难验证,故引起学术界争论不断。但是,由于量子纠缠具有的强大功能,正在成为国际大国竞相发展的焦点。文中讨论了量子纠缠目前研究的现状及其特征,探讨了量子纠缠应用的若干实例,包括量子纠缠的隐形传态功能,量子纠缠推动了量子计算机的进步,量子纠缠与大数据结合开创了量子机器学习方法等。至于量子纠缠技术如何应用于地质学,国内外还没有先例,但我们认为,从理论上来说不是不可能的。研究表明,两个具有相关关系的粒子之间容易产生纠缠,纠缠特别容易出现在具有亲缘关系(因果关系)的群体中。我们研究地质学问题,最喜欢、最关注的即成因问题,如岩石成因、矿床成因、变质成因、沉积成因等等。成因关系即因果关系。因此从成因研究入手,可能是量子纠缠技术在地质学上应用的切入点。从我国经济发展、资源现状和国际生存空间角度出发,我们应当重视对量子纠缠技术应用的研究。将量子纠缠技术引入地质学领域是一件前无古人但肯定后有来者的事情。

 

Abstract: Newtonian mechanics is a theory for studying the macroscopic world and quantum mechanics is for the microscopic world. Many phenomena described by quantum mechanics are beyond the macroscopic world; some of them are mysterious and even subvert our understanding of science. The most typical one is quantum entanglement. It describes two mutually entangled quanta not independent of each other regardless of the distance between them, i.e., when one of the entangled quanta is measured, the other-although far apart-can also be sensed and measured by correlation. Quantum entanglement is the most incredible feature of quantum systems distinguished from classical systems, and it has caused academic debate precisely because it is magical and difficult to verify. However, due to its powerful functionality, quantum entanglement has become the focus of world powers. In this paper, we discussed the current status of quantum entanglement research and its characteristics and explored a few examples of its applications including the teleportation function of quantum entanglement, possible relationship between quantum entanglement and telepathy, advancing quantum computing through quantum entanglement, combining quantum entanglement and big data to create quantum machine learning, and so on. Presently, there is no precedent of applying quantum entanglement technology in geology, but we believe it is not impossible theoretically. Studies have shown that two related particles are prone to entanglement; and entanglement is particularly prone to occur in groups whose members are related by kinship or causality. Coincidentally, in studying geology, our most favored and concerned subjects are the causes of geological phenomena such as rock formation, mineral deposits, metamorphosis, sedimentation, and so on. The causal relationship is causality. In fact, most geological causal relationships resemble a genetic or kinship relationship. Therefore, it seems to us that research on causality could be the entry point to geological applications of quantum entanglement technology. Here we discussed several attentive issues in applying quantum entanglement to geology. From the perspective of China's economic development, its current resources status and its survival in a modern world, we need to pay attention to quantum entanglement technology, whose introduction into the field of geology is something that has never been seen before but will be for sure.

Key words: quantum mechanics, quantum entanglement, teleportation, machine learning, geology, macro-micro scale application