地学前缘 ›› 2018, Vol. 25 ›› Issue (4): 245-254.DOI: 10.13745/j.esf.sf.2018.2.1

• 盆地与资源 • 上一篇    下一篇

页岩储层-超临界CO2-模拟压裂液相互作用实验研究及其环境意义

徐永强,李紫晶,郭冀隆,陈家玮   

  1. 1. 中国地质大学(北京) 生物地质与环境地质国家重点实验室, 北京 100083
    2. 中国地质大学(北京) 地球科学与资源学院, 北京 100083
  • 收稿日期:2017-03-13 修回日期:2017-11-27 出版日期:2018-07-15 发布日期:2018-07-15
  • 作者简介:徐永强(1991—),男,硕士,地球化学专业,主要从事CO2水岩相互作用实验研究。E-mail:xyq@cugb.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(41272061,41472232)

Experimental study on the shale reservoir-supercritical CO2-simulated fracturing fluid interaction and its environmental significance.

XU Yongqiang,LI Zijing,GUO Jilong,CHEN Jiawei   

  1. 1. State Key laboratory of Biogeology and Environmental Geology, China University of Geosciences(Beijing), Beijing 100083, China
    2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2017-03-13 Revised:2017-11-27 Online:2018-07-15 Published:2018-07-15

摘要: 近年来,页岩气作为一种重要的非常规天然气来源,逐渐成为国内外关注的热点。当前的研究工作总体侧重于页岩气开采技术的改进与环境监测,对页岩气开采过程中水岩相互作用还少有报道。本文采用模拟实验,选取储层页岩样品,在温度90 ℃、压力10 MPa环境下,开展了CO2压裂液页岩相互作用实验研究。主要探讨页岩气开采过程中,由于常规水力压裂液以及后期超临界CO2的增注,造成的储层岩石矿物的变化以及返排液成分的变化。实验结果显示:压裂液能使岩石矿物发生溶蚀,超临界CO2的存在会进一步加剧溶蚀反应的进行,促使孔隙变大并产生更多的微孔隙,为页岩气提供更多的运移通道,有利于油气的运移。但是,存在的环境威胁不容忽视:一方面,岩石中会溶解出大量的Ca、Mg、Si元素和少量Fe、Mn等金属元素,超临界CO2、富有机质页岩以及压裂液中表面活性剂等物质在高温高压酸性环境条件下,容易生成挥发性有机物残留在地层中,极有可能沿着岩石破碎的孔隙、断裂发生迁移或泄露,从而对地下含水层造成污染;另一方面,多种成分进入高矿化度溶液体系经返排回到地表,也会增大处理返排液的难度。本文取得的实验数据和成果有助于理解页岩气储层在开采过程中可能发生的水岩相互作用过程及其潜在的环境风险。

关键词: 页岩气, 压裂液, 超临界CO2, 水岩相互作用, 环境风险

Abstract: Shale gas is an important unconventional source of natural gas and has become a research hot topic in recent years. However, current studies have been mainly focused on the extraction technology improvements and environmental monitoring while waterrock interaction during shale gas exploration has seldom been reported. In this work, simulated experiments were conducted on the CO2fracturing fluidshale interaction at 90 ℃ temperature and 10 MPa pressure, using selected shale rock samples. The main goal was to investigate the changes in rock mineral and flowback fluid compositions following sequential injections of hydraulic fracturing fluid and supercritical CO2. The results showed that the fracturing fluid could cause shale to erode, and the presence of supercritical CO2 could further enhance dissolution of minerals, which resulted in increase of pore size and micropore formation, making more channels available for shale gas and oil to migrate. This migration enhancement, however, may pose environmental threats and should not be ignored. As our study showed, many elements, including large amounts of Ca, Mg, Si and small amounts of Fe and Mn, were dissolved from the shale. Furthermore, under acidic environments of high temperature and pressure, volatile organic compounds (VOCs) were easily produced by the reaction system made of supercritical CO2, organic matters (in shale) and surfactants (in fracturing fluid). Moreover, VOCs remained in the stratum, and very likely leaked through the pores or faults and polluted the aquifer. Also, flowback fluid was more difficult to treat since various VOCs and elements were mixed with the high salinity solution. This study should help to understand the waterrock interactions as well as potential environmental risks during shale gas exploration.

Key words:  shale gas, fracturing fluid, supercritical CO2, waterrock interaction, environmental risk

中图分类号: