地学前缘 ›› 2019, Vol. 26 ›› Issue (1): 272-285.DOI: 10.13745/j.esf.sf.2018.1.2

• 非主题来稿选登 • 上一篇    下一篇

蛇绿岩型铬铁矿床包壳纯橄榄岩中的流体过程印记:来自西藏雅鲁藏布江缝合带罗布莎和泽当岩体的地质学、岩石学和橄榄石晶体化学证据

罗照华,江秀敏,刘晓,李重,吴宗昌,井文超   

  1. 中国地质大学 地质过程与矿产资源国家重点实验室, 北京 100083
  • 收稿日期:2017-01-23 修回日期:2017-03-10 出版日期:2019-01-30 发布日期:2019-01-30
  • 作者简介:罗照华(1956—), 男, 博士, 教授, 博士生导师, 主要从事火成岩岩石学、区域岩石大地构造方面的研究工作。E-mail:luozh@cugb.edu.cn
  • 基金资助:
    中国地质调查局地质大调查项目(121201102000150069-01, 1212011220921); 青海省地质调查研究院项目(QHDDY201401)

Imprints of fluid process of shell dunite in ophiolitic chromite deposits: evidences from geology, petrology and crystal chemistry of olivine found in Luobusa and Zedang ophiolites in the Yarlung Zangbo suture zone, Tibet

LUO Zhaohua,JIANG Xiumin,LIU Xiao,LI Zhong,WU Zongchang,JING Wenchao   

  1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
  • Received:2017-01-23 Revised:2017-03-10 Online:2019-01-30 Published:2019-01-30
  • Supported by:
     

摘要: 岩浆型矿床一般认为是岩浆分异的产物,因为这类矿床通常缺乏强烈的近矿围岩蚀变。蛇绿岩中的豆荚状铬铁矿被认为是一种典型的岩浆型矿床,流行的成因模型包括岩浆通道模型和熔体岩石反应模型。深部晶体群的大量发现,表明铬铁矿成矿系统不是一种理想系统,而是至少由两类子系统组成的复杂性动力系统。因此,流行模型不再适用,必须构建能够整合新证据的成因模型。这类矿床的典型地质特征是具有从方辉橄榄岩围岩经包壳纯橄榄岩到铬铁矿石的分带,且包壳纯橄榄岩与铬铁矿之间为渐变接触关系,包壳纯橄榄岩与方辉橄榄岩之间既可以为渐变接触关系,也可以为截然接触关系或侵入接触关系。因此,阐明纯橄榄岩的成因是理解豆荚状铬铁矿形成机制的关键。西藏雅鲁藏布江缝合带中罗布莎和泽当两个代表性超镁铁质杂岩体的新观察揭示:(1)包壳纯橄榄岩的出露宽度变化于厘米级到百米级,但岩石具有均匀的细粒结构,流行模型难以解释;(2)包壳纯橄榄岩可以划分为至少两种构造类型:块状纯橄榄岩和片理化纯橄榄岩,暗示了纯橄榄岩形成过程的多阶段特点;(3)包壳纯橄榄岩主要由变晶橄榄石组成,仅含有少量由熔体或流体析出的橄榄石晶体;(4)与方辉橄榄岩相比,包壳纯橄榄岩中的橄榄石具有高MgO、Cr2O3、CaO和低MnO、Al2O3的特点,展示了矛盾的晶体化学特征;(5)邻近铬铁矿体的纯橄榄岩中常见反豆状结构,类似于多相稀释流体流体制中紊流产生的中尺度结构。上述看似矛盾的证据表明包壳纯橄榄岩的形成过程有大量深部流体的参与,因而流体过程可以作为构建一个新的整合模型的基础。据此,文中提出一个熔体流体流模型,其基本机制是溶解沉淀反应Opx+Fluid→Ol±Sp±Cpx±Pl±SiO2(fluid),而基本前提则是深部还原流体的持续供给和熔体流体流的快速上升。此外,文中还表明,依据火成岩地质学、岩石学和名义无水矿物晶体化学证据也可以再造岩浆系统的流体过程。

 

关键词: 包壳纯橄榄岩, 豆荚状铬铁矿, 橄榄石, 熔体流体流, 西藏罗布莎蛇绿岩

Abstract: Magmatic deposits are generally regarded as the product of magmatic differentiation for lack of strong near-ore wall rock alteration. Ophiolitic podiform chromite deposits are typical magmatic deposits. Popular genetic models of podiform chromitities include the magma channel model and melt-rock interaction model. However, the discovery of a massive deep seated crystal population, indicated the chromite ore system is not an ideal but complex dynamic system with at least two subsystems. A different genetic model, therefore, is needed to account for the new evidences. One characteristic feature of chromite deposits is the zoning from harzburgite wall rock, through shell dunite, to chromitite, with progressive contacts between dunite and chromitite, and abrupt, progressive or intrusive contacts between shell dunite and harzburgite. Thus, the origin of dunite is key to the understanding of formation mechanism of podiform chromitities. The recent observations of two typical ultramafic complexes in Luobusa and Zedang in the Yarlung Zangbo suture zone revealed: (1) the width of shell dunite varies from centimeters to hundred meters, but the rocks uniform fine-grained structure can not be explained by the popular models; (2) shell dunite can be classified into massive and schistose structures, which implies a multi-stage process in dunite formation; (3) shall dunite mainly consists of blastic olivine, with few olivine crystals crystallized from melt or fluid; (4) in contrast to harzburgite, olivine crystals in shell dunite are characterized by high MgO, Cr2O3, CaO and low MnO, Al2O3 contents-two contradictory features; and (5) the anti-podiform texture, commonly found in dunite near the chromite ore body, resembles the mesoscale texture formed by turbulence in the multi dilute fluid flow. These seemingly contradictory observations suggest that dunite formation involves a deep seated fluid mass, hence fluid process could be a basis for building a new model. Based on this assumption, we proposed here a melt-fluid flow model, its mechanism is the dissolution-precipitation reaction: Opx+Fluid→Ol±Sp±Cpx±Pl±SiO2 (fluid); the basic preconditions for the mechanism are continuous supply of deep fluid and rapid rise of melt-fluid flow. In this paper we also demonstrated that evidences from igneous geology, petrology and crystal chemistry of nominally anhydrous minerals can be used to rebuild the fluid state of a magma.

Key words: shell dunite, podiform chromitites, olivine, melt-fluid flow, Luobusa ophiolite, Tibet

中图分类号: