地学前缘 ›› 2014, Vol. 21 ›› Issue (6): 155-164.DOI: 10.13745/j.esf.2014.06.017

• 论文 • 上一篇    下一篇

“嫦娥三号”着陆区月壤下伏玄武岩单元划分和充填过程研究

李勃,凌宗成,张江,武中臣,倪宇恒,陈剑   

  1. 1. 山东大学 空间科学研究院; 山东省光学天文与日地空间环境重点实验室,山东 威海 264209 2. 中国科学院 月球与深空探测重点实验室,北京 100012
  • 收稿日期:2014-07-11 修回日期:2014-08-04 出版日期:2014-11-15 发布日期:2014-11-15
  • 作者简介:李勃(1981—),男,博士,讲师,主要从事行星科学和地理信息系统研究。E-mail: libralibo@sdu.edu.cn
  • 基金资助:

    国家自然科学基金项目(11003012,U1231103,41373068,41473065);山东省自然科学基金项目(ZR2011AQ001);中国科学院重点部署项目(KGZD-EW-603);中国科学院月球与深空探测重点实验室开放基金项目;山东大学威海校区校科研启动基金项目

 The classification and filling process of underlying basaltic units in Chang’E-3’s landing area

  • Received:2014-07-11 Revised:2014-08-04 Online:2014-11-15 Published:2014-11-15

摘要:

月球在演化过程中,几乎没有经历过大气或流水等地质作用,在全月范围覆盖有表层土壤,极少有下伏岩石裸露。经过数十亿年的空间风化作用,月海月壤光谱特性与下伏玄武岩有很大差别。因此,通过常规遥感方法不能探知下伏玄武岩的特性。了解月球岩石的关键是透过干扰的月壤看到下伏岩石的信息。通过对“嫦娥三号”着陆区低成熟度撞击坑坑底和坑壁位置的光谱分析,进行月壤下伏玄武岩的组分识别、单元划分并根据地形数据计算其厚度。具体内容包括:(1)基于LISM多光谱遥感数据的撞击坑筛选与光谱信息提取;(2)玄武岩单元类型划分和厚度反演,建立离散撞击坑与连续的地质单元之间的关系。结果表明,研究区至少发生了6期玄武岩溢出充填活动,由新到老可以依次划分出6种玄武岩单元。其中单元1、2和3的厚度从南向北逐渐减小最后消失;单元4、5和6可能分布于整个研究区,在南部区域被前3期玄武岩单元覆盖,没有暴露在月表,在北部区域则位于下伏玄武岩的顶层。从元素含量上看,不同玄武岩单元Ti质量分数变化较大,从最低的1.26%到最高的6.65%,而Fe质量分数相对变化较小,在16.31%到17.57%。最后,玄武岩填充时间与其Fe、Ti元素含量之间有一定的联系,玄武岩年代越年轻,其中的Fe和Ti元素更加富集。

 

关键词: &ldquo, 嫦娥三号&rdquo, ;着陆区;下伏玄武岩;单元划分;充填过程

Abstract:

The crust of Moon that has undergone little to none tectonic, atmospheric, or fluvial activity, is blanketed by the ubiquitous surface soil, or regolith, and there is hardly any bedrock exposed. It is produced from billions of years of physical and chemical weathering and exposure to the solar wind. These processes tend to blend and obscure the lithology of true crustal bedrock. So it is hard to detect the characteristics of the underlying basalts using conventional remote sensing methods. The key to the determination of true crustal compositions is to look beneath the obscuring regolith. This paper analyzes the spectra of the floor and wall in craters which have the low optical maturity to study the compositions and information (depth, succession and distribution) of the underlying basalts in Chang
’E-3’s landing area. The details are as follows: (1) selecting craters and extracting spectra based on multiband remote sensing data of LISM, (2) defining the types and determining the information of the basaltic units and building the relationships between discrete craters and the continuous geological unit. The results show that there are at least six basaltic filling processes in the study area, and we can define six basaltic units from young to old age. The depth of unit 13 is reduced gradually from south to north until disappears. The unit 46 may exist in all study area, and in south region they are covered by the first three basaltic units and not exposed, while in north region they are located at the top of the underlying basalts. As to the element abundances of all basaltic units, titanium content changes a lot, from 1.26% to 6.65%, while iron content shows small change, between 16.31% and 17.57%. Finally, we found that there is a link between basaltic unit age and element abundance, that is the younger the age of basaltic units, the more enrichment in titanium and iron in it.

 

Key words: Chang’E-3, landing area, underlying basalts, basaltic unit classification, filling process

中图分类号: